首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   12篇
  国内免费   9篇
  2022年   2篇
  2021年   4篇
  2020年   9篇
  2019年   3篇
  2018年   6篇
  2017年   9篇
  2016年   8篇
  2015年   8篇
  2014年   21篇
  2013年   28篇
  2012年   27篇
  2011年   32篇
  2010年   8篇
  2009年   20篇
  2008年   25篇
  2007年   31篇
  2006年   23篇
  2005年   29篇
  2004年   23篇
  2003年   16篇
  2002年   6篇
  2001年   7篇
  2000年   17篇
  1999年   6篇
  1998年   15篇
  1997年   16篇
  1996年   21篇
  1995年   11篇
  1994年   17篇
  1993年   13篇
  1992年   10篇
  1991年   6篇
  1990年   9篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   12篇
  1985年   6篇
  1984年   12篇
  1983年   7篇
  1982年   11篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有564条查询结果,搜索用时 31 毫秒
1.
Summary Certain populations of arginine vasopressin (AVP) neurons in the magnocellular paraventricular nucleus became immunoreactive for neuropeptide Y (NPY) when rats were treated with colchicine or monosodium glutamate (MSG). The co-storage of these peptides was examined by empooying a post-embedding electron-microscopic immunohistochemistry technique using goldlabeled antibodies to the two peptides. In colchicinetreated rats, the neuronal perikarya contained numerous secretory granules showing co-storage of the two peptides. The cells of the MSG-treated rats were characterized by having well-developed Golgi bodies with the granular structures also co-storing the two peptides, although the secretory granules in the perikarya were rather fewer than in the colchicine-treated rats. It is concluded that the destruction of the arcuate nucleus by MSG-treatment may potentiate the synthesis of NPY in AVP neurons, the synthesis of which is latent in intact animals.  相似文献   
2.
Summary Arginine kinase (AK) is present throughout the life cycle of Drosophila melanogaster, but there is a sharp, transient peak of AK activity during the prepupal period and a second period of elevated activity at the time of eclosion of the adult. Imaginal discs show the greatest increase in AK activity at the prepupal stage of those tissues assayed. The prepupal peak is not seen when the temperature-sensitive ecdysoneless mutant ecd-1 is shifted to 29° C at mid-third instar larval stage. The peak in activity reappears when ecd-1 is either shifted back to 20° C after 60 h at 29° C or is fed 20-hydroxyecdysone. At the restrictive temperature, imaginal discs from ecd-1 larvae progressively lose AK activity, whereas discs from 20-hydroxyecdysone-fed larvae have a marked increase in AK activity at stage P3 of the prepupal period. These data suggest that the prepupal peak is regulated by the hormone 20-hydroxyecdysone.  相似文献   
3.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   
4.
The relative contributions made by the l-arginine/agmatine/N-carbamoylputrescine/putrescine and the l-ornithine/putrescine pathways to hyoscyamine formation have been investigated in a transformed root culture of Datura stramonium. The activity of either arginine decarboxylase (EC 4.1.1.19) or ornithine decarboxylase (EC 4.1.1.17) was suppressed in vivo by using the specific irreversible inhibitors of these activities, dl--difluoromethylarginine or dl--difluoromethylornithine, respectively. It was found that suppression of arginine decarboxylase resulted in a severe decrease in free and conjugated putrescine and in the putrescine-derived intermediates of hyoscyamine biosynthesis. In contrast, the suppression of ornithine decarboxylase activity stimulated an elevation of arginine decarboxylase and minimal loss of metabolites from the amine and alkaloid pools. The stimulation of arginine decarboxylase was not, however, sufficient to maintain the same potential rate of putrescine biosynthesis as in control tissue. It is concluded that (i) in Datura the two routes by which putrescine may be formed do not act in isolation from one another, (ii) arginine decarboxylase is the more important activity for hyoscyamine formation, and (iii) the formation of polyamines is favoured over the biosynthesis of tropane alkaloids. An interaction between putrescine metabolism and other amines is also indicated from a stimulation of tyramine accumulation seen at high levels of dl--difluoromethylornithine.Abbreviations ADC arginine decarboxylase - DFMA dl--dif-luoromethylarginine - DFMO dl--difluoromethylornithine - MPO N-methylputrescine oxidase - ODC ornithine decarboxylase - PMT putrescine N-methyltransferase We are indebted to Dr. E.W.H. Bohme of Merrell Dow Research Laboratories (Cincinnati, Ohio, USA) for kind gifts of DFMO and DFMA and to Dr. M.J.C. Rhodes for helpful advice and discussion.  相似文献   
5.
During leaf senescence and abscission, total nitrogen in leaves of mulberry ( Morus alba L. ev. Shin-ichinose) declined substantially whereas total nitrogen in buds, bark and stem wood increased markedly, suggesting translocation of nitrogen from senescent leaves in the autumn. After leaf abscission the winter buds and stems remained almost unchanged with respect to fresh and dry weight and total nitrogen until bud break in spring. In burst buds these parameters then increased drastically during the new growth while they decreased markedly in stems. Free arginine in the stem bark accumulated in parallel with the accumulation of total nitrogen in buds and stems in the autumn. Accumulation of proline in the wood, bark and buds also started in October but continued even after leaf-fall, increasing until mid-January (wood), mid-February (bark) and the new growth (buds). Prior to and in the early stage of bud break, proline in bark and wood decreased significantly and arginine in stem bark decreased slightly. Simultaneously, proline and arginine in the dormancy-releasing buds and asparagine, aspartic acid and glutamic acid in the buds and stems increased appreciably, suggesting that this increase in free amino acids was mainly derived from free amino acids (proline and arginine) stored in stems. The resulting marked decrease in total nitrogen and the drastic increase in asparagine in the stems and sprouting buds/new shoots were primarily due to a breakdown of protein stored in stems.  相似文献   
6.
Summary The experiments described herein use an in vitro preparation of choroid plexus to demonstrate that it is a vasopressin-responsive organ by morphologic criteria. Choroid plexus from rats was incubated for one hour in graded concentrations of arginine vasopressin (AVP). Within physiologic range of molar concentration, incubation in vasopressin induced a decrease in basal and lateral spaces in choroid plexus epithelial cells as well as an increase in number of dark cells. The number of cells with basal spaces decreased significantly from 82.7±9.2 in control tissue to 19±18 in tissue incubated in 10-12 M AVP; similarly, the number with lateral cellular spaces decreased from 20±8.8 to 7.6±2.2 cells in 10-10 M AVP. Dark cells increased in number from 3.8±2.6 in control conditions to 49±4 with 10-9 M vasopressin. These data suggest important effects of arginine vasopressin in cerebrospinal fluid (CSF) on choroid plexus, compatible with enhanced fluid transport across choroid epithelial cells.  相似文献   
7.
Chlorella saccharophila can utilize the amino acids arginine, glutamate. ornithine and proline as sole sources of nitrogen for growth. By comparison C. autotrophica utilized only arginine and ornithine. Following osmotic shock of Chlorella autotrophica from 50 to 150% artificial seawater rapid synthesis of proline (the main osmoregulatory solute in this alga) occurred in cells grown on arginine or citrulline. However, little proline synthesis occurred in ornithine-grown cells. Distribution of radiolabelled carbon from [14C]-arginine assimilation following osmotic shock of C. autotrophica agrees with the following pathway of arginine utilization: arginine→citrulline→ornithine→glutamate semialdehyde→pyrroline-5-carboxylate→proline. These 4 steps are catalysed by arginine deiminase (EC 3.5.3.6), citrullinase (EC 3.5.1.20), ornithine transaminase (EC 2.6.1.13) and pyrroline-5-carboxylate reductase (EC 1.5.1.2), respectively. Of these 4 enzymes, only arginine deiminase and pyrroline-5-carboxylate reductase were detected in the crude extract of the 2 Chlorella species. Arginine deiminase did not require specific cations for optimal activity. The deimi-nase showed maximal activity at pH 8.0 and followed Michaelis-Menten kinetics with an apparent Km for L-arginine of 0.085 m M for the C. autotrophica enzyme and 0.097 m M for that of C. saccharophila. The activity of arginine deiminase was not influen-ced by growing C. saccharophila on arginine. Ornithine competitively inhibited arginine deiminase with an apparent K, of 2.4 m M for the C. autotrophica enzyme, and 3.8 m M for that of C. saccharophila . Arginine utilization by Chlorella is discussed in relation to that of other organisms.  相似文献   
8.
L-lysine Transport in Chicken Jejunal Brush Border Membrane Vesicles   总被引:2,自引:0,他引:2  
The properties of l-lysine transport in chicken jejunum have been studied in brush border membrane vesicles isolated from 6-wk-old birds. l-lysine uptake was found to occur within an osmotically active space with significant binding to the membrane. The vesicles can accumulate l-lysine against a concentration gradient, by a membrane potential-sensitive mechanism. The kinetics of l-lysine transport were described by two saturable processes: first, a high affinity-transport system (K mA= 2.4 ± 0.7 μmol/L) which recognizes cationic and also neutral amino acids with similar affinity in the presence or absence of Na+ (l-methionine inhibition constant KiA, NaSCN = 21.0 ± 8.7 μmol/L and KSCN = 55.0 ± 8.4 μmol/L); second, a low-affinity transport mechanism (KmB= 164.0 ± 13.0 μmol/L) which also recognizes neutral amino acids. This latter system shows a higher affinity in the presence of Na+ (KiB for l-methionine, NaSCN = 1.7 ± 0.3 and KSCN = 3.4 ± 0.9 mmol/L). l-lysine influx was significantly reduced with N-ethylmaleimide (0.5 mmol/L) treatment. Accelerative exchange of extravesicular labeled l-lysine was demonstrated in vesicles preloaded with 1 mmol/L l-lysine, l-arginine or l-methionine. Results support the view that l-lysine is transported in the chicken jejunum by two transport systems, A and B, with properties similar to those described for systems b 0,+ and y+, respectively. Received: 14 August 1995/Revised: 2 April 1996  相似文献   
9.
As with most amino acid biosynthetic pathways in streptomycetes, enzymes of arginine biosynthesis inStreptomyces coelicolor show only slight derepression in minimal medium without, as opposed to with, exogenous arginine. However, when an arginine auxotroph was cultured in limiting arginine, ornithine carbamoyltransferase (OCT) activities rose by as much as 100-fold. The response was not due to a general starvation effect. To elucidate the repression-derepression mechanism, a DNA fragment containing the upstream region of the previously isolatedS. coelicolor argCJB cluster was cloned into a multicopy vector and transformed into wild-typeS. coelicolor; a slight transient derepression of OCT was observed in minimal medium without, though not with, added arginine, consistent with titration by the insert of a negatively acting macromolecule such as a repressor. A sub-fragment carrying the 5 end ofargC and the region immediately upstream showed specific binding, in mobility shift assays, to purified AhrC, the repressor/activator of genes of arginine metabolism inBacillus subtilis. It is therefore likely that inS. coelicolor, expression of arginine biosynthesis genes is controlled by a protein homologous to the well-characterisedB. subtilis andEscherichia coli repressors.  相似文献   
10.
Biosynthesis of polyamines in plants is controlled primarily by the enzymes ornithine decarboxylase (EC 4.1.1.17) and arginine decarboxylase (ADC: EC 4.1.1.19), which are responsible for the production of putrescine, and S -adenosyl-L-methionine (SAM) decarboxylase (EC 4.1.1.50) that is necessary for the formation of spermidine and spermine (Spm). Little is known about the metabolic or molecular mechanisms regulating the synthesis of these enzymes. We have studied the regulation of ADC synthesis by Spm in osmotically-stressed oat ( Avena sativa L. ev. Victory) leaves, using a polyclonal antibody to oat ADC and a cDNA clone encoding oat ADC. Treatment with Spm in combination with osmotic stress resulted in increased steady-state levels of ADC mRNA, yet the levels of ADC activity decreased. This absence of correlation is explained by the fact that Spm inhibits processing of the ADC proenzyme, which results in increased levels of this inactive ADC form and a consequent decrease in the ADC-processed form. Spermine treatment leads to delayed loss of chlorophyll in dark-incubated and osmotically-treated oat leaves. Thus, post-translational regulation of ADC synthesis by Spm may be important in explaining its anti-senescence properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号