首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   14篇
  国内免费   5篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   15篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   10篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   2篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1983年   1篇
排序方式: 共有142条查询结果,搜索用时 31 毫秒
1.
2.
Abstract: The molecular origin of protein stability has been the subject of active research for more than a generation (R. Jaenicke (1991) Eur. J. Biochem. 202, 715–728). Faced with the discovery of extremophiles, in recent years the problem has gained momentum, especially because of its biotechnological potential. In analyzing a number of enzymes from the hyperthermophilic bacterium Thermotoga maritima , it has become clear that the excess free energy of stabilization is equivalent to only a few weak bonds ( ΔΔG stab≈ 50 kJ/mol). As taken from the comparison of homologous enzymes from mesophiles, thermophiles and hyperthermophiles, these accumulate from local interactions (especially ion pairs), enhanced secondary or supersecondary structure, and improved packing of domains and/or subunits, without significantly altering the overall topology. In this review, glyceraldehyde-3-phosphate dehydrogenase will be discussed as a representative example to illustrate possible adaptive strategies to the extreme thermal stress in hydrothermal vents.  相似文献   
3.
Three species of interstitial Collembola in Entomobryidae were identified from South Korean coast. One of them, Sinella (Coecobrya) maritima, is new to science. So far 21 halophilous species in 10 families of Collembola, including the new species in this paper, were reported from the Korean peninsula.  相似文献   
4.
Abstract: Hyperthermophiles are a recently discovered group of microorganisms that grow at and above 90°C. They currently comprise over 20 different genera, and except for two novel bacteria, all are classified as Archaea. The majority of these organisms are obligately anaerobic heterotrophs that reduce elemental sulfur (S°) to H2S. The best studied from a biochemical perspective are the archaeon, Pyrococcus furiosus , and the bacterium, Thermotoga maritima , both of which are saccharolytic. P. furiosus is thought to contain a new type of Entner-Doudoroff pathway for the conversion of carbohydrates ultimately to acetate, H2 and CO2. The pathway is independent of nicotinamide nucleotides and involves novel types of ferredoxin-linked oxidoreductases, one of which has tungsten, a rarely used element, as a prosthetic group. The only site of energy conservation is at the level of acetyl CoA, which in the presence of ADP and phosphate is converted to acetate and ATP in a single step. In contrast, T. maritima utilizes a conventional Embden-Meyerhof pathway for sugar oxidation. P. furiosus also utilizes peptides as a sole carbon and energy source. Amino acid oxidation is thought to involve glutamate dehydrogenase together with at least three types of novel ferredoxin-linked oxidoreductases which catalyze the oxidation of 2-ketoglutarate, aryl pyruvates and formaldehyde. One of these enzymes also utilizes tungsten. In P. furiosus , virtually all of the reductant that is generated during the catabolism of both carbohydrates and peptides is channeled to a cytoplasmic hydrogenase. This enzyme is now termed sulhydrogenase, as it reduces both protons to H2 and S°(or polysulfide) to H2S. S° reduction appears to lead to the conservation of energy in P. furiosus but not in T. maritima , although the mechanism by which this occurs is not known.  相似文献   
5.
Soil contamination by toxic trace metal elements, like barium (Ba), may stimulate various undesirable changes in the metabolic activity of plants. The plant responses are fast and with, direct or indirect, generation of reactive oxygen species (ROS). To cope with the stress imposed by the ROS production, plants developed a dual cellular system composed of enzymatic and non-enzymatic players that convert ROS, and their by-products, into stable nontoxic molecules. To assess the Ba stress response of two Brassicaceae species (Brassica juncea, a glycophyte, and Cakile maritime, a halophyte), plants were exposure to different Ba concentrations (0, 100, 200, 300 and 500 μM). The plants response was evaluated through their morphology and development, the determination of plant leaves antioxidant enzymatic activities and by the production of plants secondary metabolites. Results indicated that the two Brassicaceae species have the ability to survive in an environment containing Ba (even at 500 μM). The biomass production of C. maritima was slightly affected whereas an increase in biomass B. juncea was noticed. The stress imposed by Ba activated the antioxidant defense system in the two species, noticed by the changes in the leaves activity of catalase (CAT), ascorbate peroxidase (APX) and guaicol peroxidase (GPX), and of the secondary metabolites, through the production of total phenols and flavonoids. The enzymatic response was not similar within the two plant species: CAT and APX seem to have a more important role against the oxidative stress in C. maritima while in B. juncea is GPX. Overall, total phenols and flavonoids production was more significant in the plants aerial part than in the roots, of the both species. Although the two Brassicaceae species response was different, in both plants catalytic and non-catalytic transformation of ROS occurs, and both were able to overcome the Ba toxicity and prevent the cell damage.  相似文献   
6.
Salt marshes and the organisms that depend on them are subject to a variety of anthropogenic threats. In Florida, Worthington’s Marsh Wrens (Cistothorus palustris griseus) and MacGillivray’s Seaside Sparrows (Ammospiza maritima macgillivraii) are species of concern that inhabit a small, narrow range of salt marsh in the northeastern corner of the state, an area of increasing human development. The historic ranges of these subspecies encompassed salt marshes in five counties, but their ranges had contracted to just two counties by the early 2000s and their populations declined. We surveyed the historic ranges of the two subspecies during the breeding seasons of 2014 and 2015 to document their distributions, identify habitat features that influenced occupancy and density, and assess whether any recolonization had occurred in areas previously abandoned. We found that the ranges of both subspecies remained relatively stable compared to the early 2000s, with no signs of either further contraction or recolonization. Both Marsh Wrens and Seaside Sparrows were more likely to occupy areas farther from uplands. Marsh Wren occupancy was positively associated with marshes dominated by smooth cordgrass (Spartina alterniflora) and negatively associated with marshes dominated by black needlerush (Juncus roemerianus). Seaside Sparrows were more likely to occur at sites of moderate elevation. We found greater densities of both subspecies in areas farther from uplands, with moderate elevations, and dense vegetation. Marsh Wren density also increased in smooth cordgrass marshes, whereas sparrow numbers increased in areas of moderate vegetation height. Despite these differences between subspecies, the need for dense vegetation away from uplands highlights the importance of smooth cordgrass marshes in the region.  相似文献   
7.
为揭示AM真菌对宿主滨梅(Prunus maritima)的作用特点及对根部土壤酶活性的影响,于2009年4月、7月和10月分别从江苏傅家边丘陵山地滨梅根围分0~10、10~20、20~30、30~40、40~50 cm 5个土层采集土壤样品,观察滨梅AM菌根结构,测定了AM真菌侵染率、孢子密度、土壤磷酸酶、脲酶活性及有效磷、碱解氮含量,着重分析了AM真菌与土壤酶活性之间的关系。结果表明,滨梅能与AM真菌形成良好的共生关系,共生体为泡囊-丛枝结构;AM真菌侵染率和孢子密度分别在7月份和10月份最高,均出现在0~20 cm土层,并随土层加深而下降;AM真菌侵染率与土壤酸性磷酸酶、中性磷酸酶、碱磷酸酶活性显著正相关,而与脲酶活性无相关性;AM真菌孢子密度与碱性磷酸酶、脲酶活性呈极显著正相关关系;孢子密度与土壤有效磷、土壤碱解氮含量显著正相关,但AM真菌侵染率仅与土壤有效磷含量显著正相关;孢子密度与菌根侵染率之间无相关性。可见,滨梅AM真菌侵染率与孢子密度有明显的时空分布并与土壤因子尤其是某些土壤酶活性密切相关,且AM菌根的形成是滨梅适应丘陵山地干旱贫瘠环境的有效对策之一。  相似文献   
8.
Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.  相似文献   
9.
Anthemis cotula is a widespread invasive alien species in Kashmir Himalaya. Being a winter annual, the species reproduces entirely by achenes and synchrony between germination requirements of the species and the habitat conditions must be of critical importance in its invasiveness. To examine how the achenes of different ages respond to different environmental cues, two laboratory experiments were performed wherein effects of different nitrogen applications and growth hormones under continuous light and dark conditions were explored. Results show that the achenes are positively photoblastic and have requirement for after‐ripening. Nitrogen applied either as potassium nitrate or as thiourea significantly improved achene germination both under continuous light and dark conditions. Although kinetin (6‐furfurylaminopurine) did not influence achene germination, gibberellic acid (GA3) applied at 1.0 mM concentration had the most significant effect on the final percentage germination under both light and dark conditions. These results suggest that the achenes have an elaborate mechanism of sensing the habitat conditions that helps them to synchronise their germination with favourable environmental conditions – a strategy that aids the species in ensuring recruitment, survival and its spread in Kashmir Himalaya.  相似文献   
10.
Thermotoga maritima β-glucosidase consists of three structural regions with 721 amino acids: the N-terminal domain, middle non-homologous region and a C-terminal domain. To investigate the role of these domains in the co-refolding of two fragments into catalytically active form, five sites coding the amino acid residue at 244, 331 in the N-terminal domain, 403 in the non-homologous region, 476 and 521 in the C-terminal domain were selected to split the gene. All the 10 resultant individual fragments were obtained as insoluble inclusion bodies and found to be catalytically inactive. However, the catalytic activity was recovered when the two fragments derived from N-terminal and C-terminal peptides were co-refolded together. It is quite interesting to find that not only the complement polypeptides such as N476/477C but also the truncated combination (N476/522C, amino acid residues from 477 to 521 is truncated) and overlapped combination (N476/245C and N476/404C, amino acid residues from 245 to 476 and from 404 to 476 are overlapped) also gave catalytically active enzymes. Our results showed that folding motifs consisted of the complete N-terminal domain play an important role in the co-refolding of the polypeptides into the catalytically active form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号