首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   4篇
  国内免费   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有61条查询结果,搜索用时 234 毫秒
1.
Abstract Increasing atmospheric CO2 may result in alleviation of salinity stress in salt-sensitive plants. In order to assess the effect of enriched CO2 on salinity stress in Andropogon glomeratus, a C4 non-halophyte found in the higher regions of salt marshes, plants were grown at 350, 500, and 650 cm3 m?3 CO2 with 0 or 100 mol m?3 NaCl watering treatments. Increases in leaf area and biomass with increasing CO2 were measured in salt-stressed plants, while decreases in these same parameters were measured in non-salt-stressed plants. Tillering increased substantially with increasing CO2 in salt-stressed plants, resulting in the increased biomass. Six weeks following initiation of treatments, there was no difference in photosynthesis on a leaf area basis with increasing CO2 in salt-stressed plants, although short-term increases probably occurred. Stomatal conductance decreased with increasing CO2 in salt-stressed plants, resulting in higher water-use efficiency, and may have improved the diurnal water status of the plants. Concentrations of Na+ and Cl? were higher in salt stressed-plants while the converse was found for K +. There were no differences in leaf ion content between CO2 treatments in the salt-stressed plants. Decreases in photosynthesis in salt-stressed plants occurred primarily as a result of decreased internal (non-stomatal) conductance.  相似文献   
2.
Tylenchulus graminis n. sp. and T. palustris n. sp. are described and illustrated from broomsedge (Andropogon virginicus L.) and pop ash (Fraxinus caroliniana Mill.), respectively. T. graminis resembles T. furcus in having a distinct anus, but T. graminis second-stage juveniles (J2) do not have a bifid tail. T. semipenetrans does not have a perceptible anus. The mature female of T. graminis has a mucronate pointed terminus while T. semipenetrans has a smooth and round terminus. T. graminis males have wider stylet knobs and basal bulb and a longer tail than T. semipenetrans males. T. graminis J2 have a longer posterior body portion (without large fat globules) than T. semipenetrans J2. T. palustris resembles T. semipenetrans in having an undetectable anus but differs by the short and conoid mature female postvulval section. The male of T. palustris has larger stylet knobs and basal bulb than those of T. semipenetrans and a bluntly rounded tail terminus, which is tapered in T. semipenetrans. T. palustris differs from T. furcus and T. graminis in having an undetectable anus, by the conoid postvulval section of mature females, by the shorter and rounded tail of males, and the shorter J2 posterior body section without large fat globules. T. graminis and T. palustris are parasites of indigenous flora of Florida.  相似文献   
3.
Native unploughed tallgrass prairie from Konza Prairie, Kansas, USA is described with respect to plant species compositional changes over a five year period in response to fire and topography. The principal gradient of variation in the vegetation is related to time since burning. Species show an individualistic response in terms of relative abundance to this gradient. Both the percentage of and cover of C4 species and all grasses decrease as the prairie remains unburnt. Forb and woody plant species numbers and abundance increase along this gradient. A secondary gradient of variation reflects topography (i.e. upland versus lowland soils). Upland soils support a higher species richness and diversity. Upland and lowland plant assemblages are distinct except on annually burnt prairie. The interaction between burning regime, topography and year-to-year climatic variation affects the relative abundance of the plant species differentially. The most dominant species overall, Andropogon gerardii, was affected only by year-to-year variation (i.e. climate). Its position at the top of the species abundance hierarchy was unaffected by burning regime or soil type. The other dominant species showed a suite of varying responses to these factors.Deceased May, 1986.  相似文献   
4.
Relationships between soil invertebrate populations and primary production of a tallgrass prairie were investigated using the insecticide-nematicide carbofuran and a range of mowing intensities to manipulate invertebrate densities and resource quantity and quality. The trophic composition of nematode populations was monitored through each of two growing seasons. Earthworm and macroarthropod densities and primary production were assessed at the end of the second season. Invertebrate densities were generally reduced in carbofuran-treated plots, although individual weights of surviving macroarth-ropod herbivores increased significantly (p<0.05). Carbofuran failed to affect estimates of above- or belowground plant biomass after two years of treatment. Changes in resource quantity and quality resulted in rapid responses by dominant invertebrate consumer populations. A 28% reduction in live root mass and a 24% increase in root detritus following two years of mowing was associated with a 54% decrease in herbivorous nematode densities, a 47% increase in microbivorous nematode densities, and a 41% increase in native earthworm biomass.  相似文献   
5.
Soil Cd addition was found to adversely affect germination ofAndropogon scoparius, Monarda fistulosa, andRudbeckia hirta. Rudbeckia germination was found to be most sensitive to soil Cd addition andAndropogon germination most tolerant (b=–.0001). Soil cadmium concentrations sufficient to reduce germination by 25% were calculated to be 30 and 46 g Cd/g soil forRudbeckia andAndropogon respectively.Contribution from Purdue University Agricultural Experiment Station, West Lafayette, Indiana 47907. AES Journal No. 7594. This work was supported by federal funds from the National Science Foundation — RANN Program.  相似文献   
6.
7.
Plants can alter biotic and abiotic soil characteristics in ways that feedback to change the performance of that same plant species relative to co-occurring plants. Most evidence for this plant-soil feedback comes from greenhouse studies of potted plants, and consequently, little is known about the importance of feedback in relation to other biological processes known to structure plant communities, such as plant-plant competition. In a field experiment with three C4 grasses, negative feedback was expressed through reduced survival and shoot biomass when seedlings were planted within existing clumps of conspecifics compared with clumps of heterospecifics. However, the combined effects of feedback and competition were species-specific. Only Andropogon gerardii exhibited feedback when competition with the clumps was allowed. For Sorghastrum nutans, strong interspecific competition eliminated the feedback expressed in the absence of competition, and Schizachyrium scoparium showed no feedback at all. That arbuscular mycorrhizal (AM) fungi may play a role in the feedback was indicated by higher AM root colonization with conspecific plant neighbours. We suggest that feedback and competition should not be viewed as entirely separate processes and that their importance in structuring plant communities cannot be judged in isolation from each other.  相似文献   
8.
9.
Abstract. A common explanation for the changes in species abundance following a fire is a shift in competitive ranking. However, experimental tests have been inconsistent and generally do not support this explanation. I examined the competitive ability of an abundant C4 grass, Andropogon gerardii, and a C3 forb, Ratibida pinnata, in a prairie remnant in northern Ohio, USA, for each of three years following a spring burn in 1996. While the abiotic environment directly influenced both species similarly, relative competitive abilities in terms of growth changed markedly: in 1996 Andropogon was less inhibited by neighbors; in 1997 both Andropogon and Ratibida had similar competitive abilities; and in 1998 Ratibida was less inhibited by neighbors. This shift in competitive response ranking paralleled the changes in relative abundance for the two species. In contrast, the effect of neighbors on survival changed markedly over time but did not differ among the two species. Thus, fire may influence species abundance through changing species competitive response ranking, at least in terms of growth.  相似文献   
10.
Andropogon gerardii, big bluestem, has 60 and 90 chromosome cytotypes. Meiosis in the hexaploid was shown to be regular, although some secondary associations of bivalents form. Meiosis in the enneaploid (2n = 9z = 90) is irregular, leading to most gametes having unbalanced chromosome complements. Both cytotypes show considerable self-incompatibility. Cytotypes crossed freely, forming a variety of fertile euploids and aneuploids. Indistinguishable exomorphology, intermixing in natural populations, and compatibility suggest that A. gerardii is best understood as a cytotypically complex single species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号