首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
  国内免费   1篇
  2022年   1篇
  2019年   3篇
  2017年   1篇
  2015年   2篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有81条查询结果,搜索用时 250 毫秒
1.
2.
Methanogenium organophilum, a non-autotrophic methanogen able to use primary and secondary alcohols as hydrogen donors, was grown on ethanol. Per mol of methane formed, 2 mol of ethanol were oxidized to acetate. In crude extract, an NADP+-dependent alcohol dehydrogenase (ADH) with a pH optimum of about 10.0 catalyzed a rapid (5 mol/min·mg protein; 22°C) oxidation of ethanol to acetaldehyde; after prolonged incubation also acetate was detectable. With NAD+ only 2% of the activity was observed. F420 was not reduced. The crude extract also contained F420: NADP+ oxidoreductase (0.45 mol/min·mg protein) that was not active at the pH optimum of ADH. With added acetaldehyde no net reduction of various electron acceptors was measured. However, the acetaldehyde was dismutated to ethanol and acetate by the crude extract. The dismutation was stimulated by NADP+. These findings suggested that not only the dehydrogenation of alcohol but also of aldehyde to acid was coupled to NADP+ reduction. If the reaction was started with acetaldehyde, formed NADPH probably reduced excess aldehyde immediately to ethanol and in this way gave rise to the observed dismutation. Acetate thiokinase activity (0.11 mol/min·mg) but no acetate kinase or phosphotransacetylase activity was observed. It is concluded that during growth on ethanol further oxidation of acetaldehyde does not occur via acetylCoA and acetyl phosphate and hence is not associated with substrate level phosphorylation. The possibility exists that oxidation of both ethanol and acetaldehyde is catalyzed by ADH. Isolation of a Methanobacterium-like strain with ethanol showed that the ability to use primary alcohols also occurs in genera other than Methanogenium.Non-standard abbreviations ADH alcohol dehydrogenase - Ap5ALi3 P1,P5-Di(adenosine-5-)pentaphosphate - DTE dithioerythritol (2,3-dihydroxy-1,4-dithiolbutane) - F420 N-(N-l-lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8-dimethyl-8-hydroxy-5-deazariboflavin-5-phosphate - Mg. Methanogenium - OD578 optical density at 578 nm - PIPES 1,4-piperazine-diethanesulfonic acid - TRICINE N-(2-hydroxy-1,1-bis[hydroxymethyl]methyl)-glycine - Tris 2-amino-2-hydroxy-methylpropane-1,3-diol - U unit (mol substrate/min)  相似文献   
3.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   
4.
Acetaldehyde production in Saccharomyces cerevisiae wine yeasts   总被引:1,自引:0,他引:1  
Abstract Eighty-six strains of Saccharomyces cerevisiae were investigated for their ability to produce acetaldehyde in synthetic medium and in grape must. Acetaldehyde production did not differ significantly between the two media, ranging from a few mg/l to about 60 mg/l, and was found to be a strain characteristic. The fermentation temperature of 30°C considerably increased the acetaldehyde produced. This study allowed us to assign the strains to different phenotypes: low, medium and high acetaldehyde producers. The low and high phenotypes differed considerably also in the production of acetic acid, acetoin and higher alcohols and can be useful for studying acetaldehyde production in S. cerevisiae , both from the technological and genetic point of view.  相似文献   
5.
乙醛脱氢酶2 (aldehyde dehydrogenase 2, ALDH2)是线粒体特异性酶,已被证明参与氧化应激诱导的细胞凋亡,而在心肌细胞中的作用知之甚少。本研究旨在通过用特异性ALDH2抑制剂大豆苷抑制ALDH2活性来研究ALDH2在抗霉素A诱导的心肌细胞凋亡中的作用。应用抗霉素A和大豆苷诱导小鼠心肌细胞,然后测定ALDH2酶活性、细胞内活性氧(reactive oxy gen species, ROS)含量和细胞凋亡,应用RT-PCR和蛋白质印迹法(Western blotting)检测ALDH2 m RNA和蛋白表达。结果表明,抗霉素A (40μg/mL)可诱导新生心肌细胞凋亡,而大豆苷(50μmol/L)能有效地抑制ALDH2活性而对细胞凋亡没有影响,并且可显著增强抗霉素A诱导的心肌细胞凋亡(53.72%~71.33%, p<0.05)。与单独用抗霉素A处理的细胞相比,抗霉素A和大豆苷共处理的心肌细胞中活化的丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号传导途径(p38-MAPK)的磷酸化也显著增加。本研究初步表明,改变线粒体ALDH2活性可能是减少氧化损伤诱导的心肌细胞凋亡的潜在选择。  相似文献   
6.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   
7.
Kashkin VA  De Witte P 《Amino acids》2004,26(2):117-124
Summary. Research has suggested that catalase plays a role in mediating ethanols psychopharmacological effects. Catalase is an enzyme that oxidizes ethanol to acetaldehyde. It has been reported that when catalase activity is reduced by 3-amino-1,2,4-triazole (AT), rats reduce their intake and preference for ethanol. The present study assessed the effects of AT on the brain amino acids levels following ethanol administration in Wistar rats. The study consisted of three parts. In the first part, we found no effects of acute and chronic intraperitoneally administered acetaldehyde on amino acids dialysate levels in nucleus accumbens. In the second part, AT was administered five hours prior to ethanol or its vehicle. Ethanol significantly affected the levels of taurine in rat pre-treated with AT. In the final part, ethanol was administered following the pre-treatment with AT but the dependent variable was the concentration of ethanol in the brain.  相似文献   
8.
Chronic alcohol abuse has deleterious effects on several organs in the body including the brain. Neuroradiological studies have demonstrated that the brains of chronic alcoholics undergo loss of both gray and white matter volumes. Neuropathological studies using unbiased stereological methods have provided evidence for loss of neurons in specific parts of the brain in chronic alcoholics. The purpose of this paper is to propose a mechanism for this alcohol related neuronal loss. The hypothesis is based on the neurodegeneration observed in patients with the genetic disorder xeroderma pigmentosum (XP), who lack the capacity to carry out a specific type of DNA repair called nucleotide excision repair (NER). Some XP patients develop a progressive atrophic neurodegeneration, termed XP neurological disease, indicating that endogenous DNA damage that is normally repaired by NER has the capacity to cause neuronal death. Accumulating evidence indicates that the neurodegenerative DNA damage that is responsible for neuronal loss in XP patients results from reactive oxygen species (ROS) and lipid peroxidation products, and has the capacity to inhibit gene expression by RNA polymerase II. Therefore, the following model is proposed: chronic alcohol abuse results in increased levels of ROS and lipid peroxidation products in neurons, which results in an overwhelming burden on the NER pathway, and increased steady state levels of DNA lesions that inhibit gene expression. This results in neuronal death either by reduction in the levels of essential gene products or by apoptosis. The implications of this model for future studies are discussed.  相似文献   
9.
The mechanism of emergence from primary dormancy, the process of after-ripening, in cocklebur (Xanthium pennsylvanicum) seeds was examined in relation to the involvement of volatile compounds and to the relative humidity (RH) in which the seeds were stored. The after-ripening of these seeds proceeds only at water contents between 7 and 14% which are conditioned under RHs of 33% to 53% and are identified with water-binding region II. After-ripening of cocklebur seeds occurred even in water-binding region I. imposed by 12% RH. when exposed to HCN gas during the storage period. Exposure of dormant seeds to acetaldehyde (ethanal) retarded after-ripening. even in water-binding region II. thus decreasing germinability. This decrease of germinability by ethanal was found also in the after-ripened seeds, suggesting that ethanal accelerates seed deterioration rather than retarding the after-ripening. The contents of ethanal. ethanal and HCN were high only in the dormant seeds held at 12% RH. Regardless of RH. a possible conversion of ethanal to ethanol. perhaps via alcohol dehydrogenase. was far larger in dormant than in non-dormant seeds. In contrast, the reverse conversion of ethanol to ethanal was more profound in non-dormant seeds. Pre-exposure of both types of seeds to HCN reduced the contents of both ethanal and ethanol at 12% RH. The contents of various adenylales including ATP in seed tissues were higher in dormant seeds stored at 12% RH than in non-dormant seeds after-ripened at 44% RH. It is suggested that emergence of cocklebur seeds from primary dormancy by HCN treatment at 12% RH may result from the reduction in the contents of ethanal via an unknown mechanism incurring the consumption of ATP. This implies involvement of volatile compound metabolism at the water-binding region II in the after-ripening process of cocklebur seeds.  相似文献   
10.
Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde–acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号