首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1095篇
  免费   100篇
  国内免费   37篇
  2024年   2篇
  2023年   7篇
  2022年   8篇
  2021年   12篇
  2020年   29篇
  2019年   41篇
  2018年   50篇
  2017年   29篇
  2016年   45篇
  2015年   30篇
  2014年   34篇
  2013年   106篇
  2012年   49篇
  2011年   46篇
  2010年   63篇
  2009年   61篇
  2008年   84篇
  2007年   78篇
  2006年   69篇
  2005年   72篇
  2004年   65篇
  2003年   30篇
  2002年   34篇
  2001年   22篇
  2000年   18篇
  1999年   25篇
  1998年   23篇
  1997年   24篇
  1996年   19篇
  1995年   10篇
  1994年   10篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1950年   1篇
排序方式: 共有1232条查询结果,搜索用时 62 毫秒
1.
Semiempirical and ab initio theoretical methods have been used to investigate molecular structures of the chalcogen-substituted carboxylic acid isomers RC(=O)XH (chalcogenol acid) and RC(=X)OH (chalcogenon acid). A recent experimental report suggests that the chalcogenon isomers, although less stable at room temperature, predominate at low temperature in polar solvents and that there is only a small barrier to isomerization between the isomers. Theoretical calculations have been used to locate minimum energy structures of chalcogen-substituted carboxylic acid isomers and to calculate energy differences between pairs of isomers. Carboxylic acids are well known to dimerize, especially in the gas phase and in non-polar solvents. We have, therefore, also calculated energies of dimerization of the chalcogen-substituted acids by optimizing the geometries of the symmetric dimers. We note that the PM3 level of theory is only qualitatively correct for sulfur- and selenium-containing species but fails even qualitatively for the tellurium-containing compounds. Ab initio results confirm the experimental observations and provide good estimates of both isomerization and dimerization energies. We conclude that for many functional groups with tautomers RC(=X)YH and RC(=Y)XH, the more acidic tautomer is the one with the acid proton on the smaller, more electronegative atom, although in many cases this may not be the more stable tautomer.Electronic Supplementary Material available.  相似文献   
2.
Two observations suggest that DNA, upon binding to E. coli catabolite gene activator protein (CAP), is sharply bent by a total angle of at least 100-150 degrees: (1) The electrostatic potential field of CAP shows regions of positive potential that form a ramp on 3 sides of the protein. (2) The DNA binding site size as determined by DNA ethylation interference with binding, (Majors: "Control of the E. coli Lac Operon at the Molecular Level." Ph.D. Thesis, Harvard University, Cambridge, 1977) and by relative affinities of DNA fragments of various lengths (Liu-Johnson et al.: Cell 47:995-1005, 1986) requires severe bending of the DNA to maintain its favorable electrostatic contact with the protein.  相似文献   
3.
The 3-dimensional optimization of the electrostatic interactions between the charged amino acid residues was studied by Monte Carlo simulations on an extended representative set of 141 protein structures with known atomic coordinates. The proteins were classified by different functional and structural criteria, and the optimization of the electrostatic interactions was analyzed. The optimization parameters were obtained by comparison of the contribution of charge-charge interactions to the free energy of the native protein structures and for a large number of randomly distributed charge constellations obtained by the Monte Carlo technique. On the basis of the results obtained, one can conclude that the charge-charge interactions are better optimized in the enzymes than in the proteins without enzymatic functions. Proteins that belong to the mixed αβ folding type are electrostatically better optimized than pure α-helical or β-strand structures. Proteins that are stabilized by disulfide bonds show a lower degree of electrostatic optimization. The electrostatic interactions in a native protein are effectively optimized by rejection of the conformers that lead to repulsive charge-charge interactions. Particularly, the rejection of the repulsive contacts seems to be a major goal in the protein folding process. The dependence of the optimization parameters on the choice of the potential function was tested. The majority of the potential functions gave practically identical results.  相似文献   
4.
Reliable prediction of free energy changes upon amino acid substitutions (ΔΔGs) is crucial to investigate their impact on protein stability and protein–protein interaction. Advances in experimental mutational scans allow high-throughput studies thanks to multiplex techniques. On the other hand, genomics initiatives provide a large amount of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computational field should keep the same pace and provide new tools for fast and accurate high-throughput ΔΔG calculations. In this context, the Rosetta modeling suite implements effective approaches to predict folding/unfolding ΔΔGs in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. However, their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols for ΔΔG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cumbersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free energy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Moreover, RosettaDDGPrediction assists with checking completed runs and aggregates raw data for multiple variants, as well as generates publication-ready graphics. We showed the potential of the tool in four case studies, including variants of uncertain significance in childhood cancer, proteins with known experimental unfolding ΔΔGs values, interactions between target proteins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELELAB/RosettaDDGPrediction .  相似文献   
5.
The difference in reduction potentials between ortho and para-benzoquinones has been calculated. The employs gas phase ab initio and semi-empirical computations in combination with free energy perturbation theory applied to gas and solution phase Monte Carlo simulations. The effects on calculated results of altering solute electrostatic parameterisation in solution phase simulations is examined. Atom centred charges derived from the molecular electrostatic potentials, MEPs, from optimised ab initio wavefunctions and charges generated by consideration of hydrogen bonded complexes are considered. Parameterisation of hydroxyl torsions in hydroquinone molecules is treated in a physically realistic manner. The coupled torsional system of the ortho-hydrobenzoquinone molecule is described by a potential energy surface calculated using gas phase AM1 semi-empirical computations rather than the simple torsional energy functions frequently employed in such calculations. Calculated differences in electrode potentials show that the electrostatic interactions of quinone and hydroquinone molecules in aqueous solution are not well described by atom centred charges derived from ab initio calculated MEPs. Moreover, results in good agreement with the experimental reduction potential difference can be obtained by employing high level ab initio calculations and solution phase electrostatic parameters developed by consideration of hydrogen bonded complexes.  相似文献   
6.
Summary Two modifications to the commonly used protocols for calculating NMR structures are developed, relating to the treatment of NOE constraints involving groups of equivalent protons or nonstereoassigned diastereotopic protons. Firstly, a modified method is investigated for correcting for multiplicity, which is applicable whenever all NOE intensities are calibrated as a single set and categorised in broad intensity ranges. Secondly, a new set of values for pseudoatom corrections is proposed for use with calculations employing centre-averaging. The effect of these protocols on structure calculations is demonstrated using two proteins, one of which is well defined by the NOE data, the other less so. It is shown that failure to correct for multiplicity when using r-6 averaging results in overly precise structures, higher NOE energies and deviations from geometric ideality, while failure to correct for multiplicity when using r-6 summation can cause an avoidable degradation of precision if the NOE data are sparse. Conversely, when multiplicities are treated correctly, r-6 averaging, r-6 summation and centre averaging all give closely comparable results when the structure is well defined by the data. When the NOE data contain less information, r-6 averaging or r-6 summation offer a significant advantage over centre averaging, both in terms of precision and in terms of the proportion of calculations that converge on a consisten result.Abbreviations HMG high mobility group - NOE nuclear Overhauser enhancement - NOESY nuclear Overhauser enhancement spectroscopy - rmsd root-mean-square deviation - YASAP yet another simulated-annealing protocol  相似文献   
7.
We present ab-initio periodic Hartree–Fock calculations (crystal program) of small molecules on TiO2 and MgO. The adsorption of the molecules may be molecular or dissociative. This depends on their acid and basic properties in the gas phase. For the molecular adsorption, the molecules are adsorbed as bases on Ti(+IV) sites, the adsorption energies correlate with the proton affinities. The dissociations on the surface correlate with the gas phase cleavages: thus, the dissociation of MeOH leads to a preferential basic cleavage (the fragment HO– is adsorbed on a Ti+4 ion and the fragment Me+ is adsorbed on a O2– ion of the oxide). The opposite result is obtained with MeSH. Another important factor is the adsorbate–adsorbate interaction: favorable cases are a sequence of H-bonds for the hydroxyl groups resulting from the water dissociation and the mode of adsorption for the ammonium ions. Lateral interactions also force the adsorbed CO2 molecules to bend over the surface so that their mutual orientation resembles the geometry of the CO2 dimer. With respect to water adsorption, MgO appears to be a basic oxide. As experimentally observed, NH3 adsorbs preferentially on TiO2 and CO2 on MgO. However, this difference of reactivity should not be expressed in terms of acid vs. basic behaviour but in terms of hard and soft acidity. The MgO surface is a 'soft' acidic surface that reacts preferentially with the soft base, CO2.  相似文献   
8.
Chemical shifts and three-dimensional protein structures   总被引:4,自引:4,他引:0  
Summary During the past three years it has become possible to compute ab initio the 13C, 15N and 19F NMR chemical shifts of many sites in native proteins. Chemical shifts are beginning to become a useful supplement to more established methods of solution structure determination, and may find utility in solid-state analysis as well. From 13C NMR, information on , and torsions can be obtained, permitting both assignment verification, and structure refinement and prediction. For 15N, both torsional and hydrogen-bonding effects are important, while for 19F, chemical shifts are primarily indicators of the local charge field. Chemical shift calculations are still slow, but shielding hypersurfaces — the shift as a function of the dihedral angles that define the molecular conformation — are becoming accessible. Over the next few years, theoretical and computer hardware improvements will enable more routine use of chemical shifts in structural studies, including the study of metal-ligand interactions, the analysis of drug and substrate binding and catalysis, the study of folding/unfolding pathways, as well as the characterization of conformational substates. Rather than simply being a necessary prerequisite for multidimensional NMR, chemical shifts and chemical shift non-equivalence due to folding are now beginning to be useful for structural characterization.  相似文献   
9.
本文报道用自旋非限制Hartree-Fock方法(spin unrestricted Hartree-Fock method简写UHF)对氧合血红蛋白的Fe-O2键合态进行ab initio研究。结果表明Fe(Ⅱ)、Oc和Or的Mulliken布居值分别为24.18、8.19和7.64。这说明氧合血红蛋白的Fe-O2键合态不发生电子转移。研究模型所得到的频率与实验频率基本一致。研究结果不支持Weiss提出的Fe3+O2-模型,为解释血红蛋白传输氧的作用机理提供了新的理论依据。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号