首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2010年   2篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Matrilin-1 is expressed predominantly in cartilage and co-localizes with matrilin-3 with which it can form hetero-oligomers. We recently described novel structural and functional features of the matrilin-3 A-domain (M3A) and demonstrated that it bound with high affinity to type II and IX collagens. Interactions preferentially occurred in the presence of Zn2+ suggesting that matrilin-3 has acquired a requirement for specific metal ions for activation and/or molecular associations. To understand the interdependence of matrilin-1/-3 hetero-oligomers in extracellular matrix (ECM) interactions, we have extended these studies to include the two matrilin-1 A-domains (i.e. M1A1 and M1A2 respectively). In this study we have identified new characteristics of the matrilin-1 A-domains by describing their glycosylation state and the effect of N-glycan chains on their structure, thermal stability, and protein-protein interactions. Initial characterization revealed that N-glycosylation did not affect secretion of these two proteins, nor did it alter their folding characteristics. However, removal of the glycosylation decreased their thermal stability. We then compared the effect of different cations on binding between both M1A domains and type II and IX collagens and showed that Zn2+ also supports their interactions. Finally, we have demonstrated that both M1A1 domains and biglycan are essential for the association of the type II·VI collagen complex. We predict that a potential role of the matrilin-1/-3 hetero-oligomer might be to increase multivalency, and therefore the ability to connect various ECM components. Differing affinities could act to regulate the integrated network, thus coordinating the organization of the macromolecular structures in the cartilage ECM.  相似文献   
2.
The GE81112 tetrapeptides (1–3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering.  相似文献   
3.
In the presence of bound Mn2+, the three- dimensional structure of the ligand-binding A-domain from the integrin CR3 (CD11b/CD18) is shown to exist in the “open” conformation previously described only for a crystalline Mg2+ complex. The open conformation is distinguished from the “closed” form by the solvent exposure of F302, a direct T209–Mn2+ bond, and the presence of a glutamate side chain in the MIDAS site. Approximately 10% of wild-type CD11b A-domain is present in an “active” state (binds to activation-dependent ligands, e.g., iC3b and the mAb 7E3). In the isolated domain and in the holoreceptor, the percentage of the active form can be quantitatively increased or abolished in F302W and T209A mutants, respectively. The iC3b-binding site is located on the MIDAS face and includes conformationally sensitive residues that undergo significant shifts in the open versus closed structures. We suggest that stabilization of the open structure is independent of the nature of the metal ligand and that the open conformation may represent the physiologically active form.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号