首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   0篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   8篇
  2014年   5篇
  2013年   15篇
  2012年   8篇
  2011年   13篇
  2010年   9篇
  2008年   6篇
  2007年   4篇
  2006年   8篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
Triple-negative breast cancer (TNBC), defined by the absence of an estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression, is associated with an early recurrence of disease and poor outcome. Furthermore, the majority of deaths in breast cancer patients are from metastases instead of from primary tumors. In this study, MCF-7 (an estrogen receptor-positive human breast cancer cell line), MDA-MB-231 (a human TNBC cell line) and 4T1 (a mouse TNBC cell line) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with suberoylanilide hydroxamic acid (SAHA, an inhibitor of histone deacetylase (HDAC)) and to determine the underlying mechanisms of these effects in vitro and in vivo. We also evaluated the ability of SAHA to inhibit the metastasis of 4T1 cells. We found that IR combined with SAHA showed increased therapeutic efficacy when compared with either treatment alone in MCF-7, MDA-MB-231 and 4T1 cells. Moreover, the combined treatment enhanced DNA damage through the inhibition of DNA repair proteins. The combined treatment was induced primarily through autophagy and ER stress. In an orthotopic breast cancer mouse model, the combination treatment showed a greater inhibition of tumor growth. In addition, SAHA inhibited the migration and invasion abilities of 4T1 cells and inhibited breast cancer cell migration by inhibiting the activity of MMP-9. In an in vivo experimental metastasis mouse model, SAHA significantly inhibited lung metastasis. SAHA not only enhances radiosensitivity but also suppresses lung metastasis in breast cancer. These novel findings suggest that SAHA alone or combined with IR could serve as a potential therapeutic strategy for breast cancer.  相似文献   
2.
In this study, various ethanol- and temperature-induced molecular dynamics simulations were conducted to investigate the conformational changes of several human lysozyme variants (I56T, D67H, and T70N) associated with hereditary systemic amyloidosis. The results show that these variants are all more sensitive to conditions affecting the structural integrity of this protein. The structural analyses of these variants reveal a high population of more unstable beta-domain and distorted hydrophobic core compared to the wild-type human lysozyme, particularly for the two natural amyloidogenic variants D67H and I56T. For the D67H variant, the distance between the mass centers of residues 54 and 67 was found to elongate as a result of the destruction of the hydrogen-bonding network stabilizing the two long loops in the beta-domain. It further accelerates the unfolding of this variant, starting from the hydrophobic core between the alpha- and beta-domains. For the I56T variant, the introduction of a hydrophilic residue in the hydrophobic core directly destroys the native contacts in the alpha-beta interface, leading to fast unfolding. The present results are consistent with the previous hypothesis suggesting that the distortion of the hydrophobic core at the alpha-beta interface putatively results in the formation of the initial "seed" for amyloid fibrils.  相似文献   
3.
The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway.  相似文献   
4.
We examined ultraviolet (UV) irradiation and cisplatin treatment damage formation and repair efficiency in the p53 tumor suppressor gene of various cultured cell lines and lymphocytes using a nonradioactive multiplex long quantitative polymerase chain reaction (QPCR) assay, which amplified a 7-kb fragment of the target gene and a 500-bp fragment of the template control to successfully increase the sensitivity and reliability of the assay. The multiplex long QPCR detected a lesion frequency of 0.63 lesions/10kb/10J/m(2) in the p53 gene of fibroblast cells. In addition, the multiplex long QPCR assay detected pronounced differences in the repair of UV damage in the p53 gene among repair-proficient CRL-1475 cells and repair-deficient XP-A and XP-C cells. The multiplex long QPCR assay was also evaluated as a sensitive assay for the detection of DNA damage induced by cisplatin. The data indicated that the lesion frequency in the p53 gene was 1.27-1.75 times higher in the H23 cisplatin-sensitive cell than in the H1435 cisplatin-resistant cell at the IC(70) dose. After 8-h and 24-h repair periods, only 13 and 75% of cisplatin-induced damage had been removed in the H23 cells, whereas these values were 92 and 100% in the H1435 cells. In addition, our data indicate that multiplex long QPCR is a sensitive method for validly estimating repair in freshly isolated lymphocytes. The results suggest that the current protocol of the multiplex long QPCR method can be used to assess the damage formation and repair efficiency of various agents at biologically relevant doses and to allow a more precise determination of gene-specific repair in disease susceptibility and drug resistance in epidemiological studies.  相似文献   
5.
The relationship between physical activity and health-related physical fitness was evaluated in 282 Taiwanese adolescents 12-14 years of age. The subjects were randomly selected from the 7th, 8th and 9th grades in two junior high schools in Taiwan. Physical activity was estimated as total daily energy expenditure and energy expenditure in moderate-to-vigorous physical activity from 24-hour activity records for three days, two week days and one weekend day. Health-related fitness was assessed as the one-mile run (cardiorespiratory endurance), timed sit-ups (abdominal strength and endurance), sit-and-reach (lower back flexibility), and subcutaneous fatness (sum of the triceps, subscapular, suprailiac, and medial calf skinfolds). Physical activity is significantly and positively correlated with one-mile run performance and the sit-and-reach, but not with sit-ups and subcutaneous fatness. Overall, the strength of the relationships between estimated energy expenditure and specific fitness items in the total sample vary from low to moderate, with only 1% to 12% of the variance in fitness variables being explained by estimated energy expenditure. Comparisons of active versus inactive, and fit versus unfit adolescents provide additional insights. The more active (highest quartile) are also more fit in cardiorespiratory endurance and in the sit-and-reach than the less active (lowest quartile), and the more fit in the one-mile run (better time, lowest quartile) and the sit-and-reach (highest quartile) are more active than the less fit in each item, respectively.  相似文献   
6.
7.
This study investigated exertion-dependent motor overflow among healthy adults when they performed isometric tasks with contralateral joints in different task directions. Twenty healthy adults (10 males and 10 females, mean age = 26.2 yrs) were instructed to complete a set of isometric contractions of various force vectors with the shoulder, elbow, and wrist joints, in a total of ten motor tasks at submaximal and maximal intensities (50%, 100% maximal voluntary contractions). The electromyographical activities from eight muscles of the unexercised upper limb were recorded to characterize intensity of motor overflow during sustained isometric contraction. Both occurrence frequency and magnitude of motor overflow in terms of standardized net excitation (SNE) increased with exertion level for all joint movements (P < 0.001). Additionally, the motor overflow magnitude depended strongly on the task direction of maximal isometric contraction (P < 0.05). Motor overflow was particularly augmented by the contralateral isometric contractions where task directions were opposed to gravity. However, such a directional effect upon SNE was not evident during submaximal contraction (P > 0.05). The difference of the net excitation between maximal and submaximal contraction (DNE(100%-50%MVC) data) indicated that the pectoralis major and triceps brachii consistently exhibited a marked recruitment in reaction to change in task direction of isometric contraction. Patterned motor overflow may be physiologically relevant to topological mapping of the ipsilateral pathways and altered effectiveness of use-dependent interhemispherical connectivity. The current observations provide better insight into gain in muscle strength due to contralateral exercise.  相似文献   
8.
SARS-CoV M gene fragment was cloned and expressed as a recombinant protein fused with a V5 tag at the C-terminus in Vero E6 cells. In addition to un-glycosylated and glycosylated proteins, one product with smaller size initiated in-frame from the third Met residues probably through ribosomal re-initiation was also detected. Translation initiated in-frame from the third Met is unusual since the sequence around the first Met of SARS-CoV M protein contains the optimal consensus Kozak sequence. The function of this smaller translated product awaits further investigation. Similar to other N-glycosylated proteins, glycosylation of SARS-CoV M protein was occurred co-translationally in the presence of microsomes. The SARS-CoV M protein is predicted as a triple-spanning membrane protein lack of a conventional signal peptide. The second and third trans-membrane regions (a.a. 46–68 and 78–100) are predicted to be the primary type helices, which will be able to penetrate into membrane by themselves, while the first trans-membrane region (a.a. 14–36) is predicted to be the secondary type helix, which is considered to be stabilized by the interaction with other trans-membrane segments. As expected, the second and third trans-membrane regions were able to insert a cytoplasmic protein into the endoplasmic reticulum membrane more efficiently than the first one. These results should be important for the study of SARS-CoV morphogenesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
9.
Saha A  Kim SJ  Zhang Z  Lee YC  Sarkar C  Tsai PC  Mukherjee AB 《FEBS letters》2008,582(27):3823-3831
Palmitoyl-protein thioesterase-1 (PPT1) deficiency causes infantile neuronal ceroid lipofuscinosis (INCL), a devastating childhood neurodegenerative storage disorder. We previously reported that neuronal apoptosis in INCL is mediated by endoplasmic reticulum-stress. ER-stress disrupts Ca2+-homeostasis and stimulates the expression of Ca2+-binding proteins. We report here that in the PPT1-deficient human and mouse brain the levels of S100B, a Ca2+-binding protein, and its receptor, RAGE (receptor for advanced glycation end-products) are elevated. We further demonstrate that activation of RAGE signaling in astroglial cells mediates pro-inflammatory cytokine production, which is inhibited by SiRNA-mediated suppression of RAGE expression. We propose that RAGE signaling contributes to neuroinflammation in INCL.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号