首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2019年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Herbivore damage by chewing insects activates jasmonate (JA) signalling that can elicit systemic defense responses in rice. Few details are known, however, concerning the mechanism, whereby JA signalling modulates nutrient status in rice in response to herbivory. (15NH4)2SO4 labelling experiments, proteomic surveys, and RT‐qPCR analyses were used to identify the roles of JA signalling in nitrogen (N) uptake and allocation in rice plants. Exogenous applications of methyl jasmonate (MeJA) to rice seedlings led to significantly reduced N uptake in roots and reduced translocation of recently‐absorbed 15N from roots to leaves, likely occurring as a result of down‐regulation of glutamine synthetase cytosolic isozyme 1–2 and ferredoxin–nitrite reductase. Shoot MeJA treatment resulted in a remobilization of endogenous unlabelled 14N from leaves to roots, and root MeJA treatment also increased 14N accumulation in roots but did not affect 14N accumulation in leaves of rice. Additionally, proteomic and RT‐qPCR experiments showed that JA‐mediated plastid disassembly and dehydrogenases GDH2 up‐regulation contribute to N release in leaves to support production of defensive proteins/compounds under N‐limited condition. Collectively, our results indicate that JA signalling mediates large‐scale systemic changes in N uptake and allocation in rice plants.  相似文献   
2.
Although the impact of elevated carbon dioxide and rising temperature on plants and animals has been extensively documented recently, only limited understanding exists regarding their combined effects. The objective of this research was to address the consequences of using combinations of elevated CO2 and elevated temperature on a plant's defensive chemistry, and subsequent utilization of the plant as insect food. Our results indicated that elevated CO2 and increased temperature, for the most part, act independently on the production of defensive compounds in broccoli leaves (Brassica oleracea L. var. italica). CO2 concentrations had significant effects on the foliar water content, total phenolic compounds, polyphenol oxidase and trypsin inhibitor concentrations. The herbivore Spodoptera litura (Fabricius; Lepidoptera: Noctuidae) responded to changes in the plant secondary chemistry, with larvae consuming more plant materials that had been exposed to elevated CO2. The food utilization efficiencies of second‐instar larvae were more sensitive to CO2‐treated foliage than those of the third‐ and fourth‐instar larvae. Temperature did exert a significant effect on food utilization (ECD) by the larvae. Our study will provide important information in future predictions on plant–insect interactions as a result of climate change. The study also demonstrated that since various larval stages might respond differently to climate change, this possibility needs to be considered in future forecasting and monitoring.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号