首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   16篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1979年   2篇
  1978年   3篇
  1975年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
2.
RNA editing in kinetoplastid mitochondria occurs by a series of enzymatic steps that is catalyzed by a macromolecular complex. Four novel proteins and their corresponding genes were identified by mass spectrometric analysis of purified editing complexes from Trypanosoma brucei. These four proteins, TbMP81, TbMP63, TbMP42, and TbMP18, contain conserved sequences to various degrees. All four proteins have sequence similarity in the C terminus; TbMP18 has considerable sequence similarity to the C-terminal region of TbMP42, and TbMP81, TbMP63, and TbMP42 contain zinc finger motif(s). Monoclonal antibodies that are specific for TbMP63 and TbMP42 immunoprecipitate in vitro RNA editing activities. The proteins are present in the immunoprecipitates and sediment at 20S along with the in vitro editing, and RNA editing ligases TbMP52 and TbMP48. Recombinant TbMP63 and TbMP52 coimmunoprecipitate. These results indicate that these four proteins are components of the RNA editing complex and that TbMP63 and TbMP52 can interact.  相似文献   
3.
Suppression of ctc promoter mutations in Bacillus subtilis.   总被引:4,自引:4,他引:0       下载免费PDF全文
C Ray  M Igo  W Shafer  R Losick    C P Moran  Jr 《Journal of bacteriology》1988,170(2):900-907
  相似文献   
4.
本文系统地回顾了日本志留纪至三叠纪牙形刺研究的历史和现在的成果。志留纪牙形刺只有少数零星的报道,没有建立化石带;早泥盆世已建立了5个牙形刺组合,没有中、晚泥盆世的记录;石炭纪有8个牙形刺带,其中晚石炭世3个牙形刺带;二叠纪5个牙形刺带或动物群,其中,中、晚二叠世各1个带(动物群);三叠纪可划分出14个牙形刺带。  相似文献   
5.
Respiratory syncytial virus (RSV) is a common respiratory viral infection in children which is associated with immune dysregulation and subsequent induction and exacerbations of asthma. We recently reported that treatment of primary human epithelial cells (PHBE cells) with transforming growth factor β (TGF-β) enhanced RSV replication. Here, we report that the enhancement of RSV replication is mediated by induction of cell cycle arrest. These data were confirmed by using pharmacologic inhibitors of cell cycle progression, which significantly enhanced RSV replication. Our data also showed that RSV infection alone resulted in cell cycle arrest in A549 and PHBE cells. Interestingly, our data showed that RSV infection induced the expression of TGF-β in epithelial cells. Blocking of TGF-β with anti-TGF-β antibody or use of a specific TGF-β receptor signaling inhibitor resulted in rescue of the RSV-induced cell cycle arrest, suggesting an autocrine mechanism. Collectively, our data demonstrate that RSV regulates the cell cycle through TGF-β in order to enhance its replication. These findings identify a novel pathway for upregulation of virus replication and suggest a plausible mechanism for association of RSV with immune dysregulation and asthma.Respiratory syncytial virus (RSV) is a single-stranded RNA virus and is a common cause of severe respiratory infections in children. RSV predominantly infects lung epithelial cells, inducing bronchiolitis, and in high-risk individuals it can cause lung fibrosis, airway hyperresponsiveness, mucus secretion, and edema. Interestingly, there is substantial evidence to show that RSV infection induces a dysregulation of the immune response (13, 14, 24, 28, 49). However, the molecular underpinnings of this immune dysregulation are not yet completely understood.It has been established that through its interaction with the immune system, RSV is associated with development and exacerbations of asthma, which is a chronic inflammatory respiratory disease (17, 18, 36, 41). In comparison to healthy individuals, those with asthma have an exaggerated inflammatory response during respiratory virus infections. Despite many studies reporting the involvement of RSV with asthma development and exacerbations, the underlining mechanisms are not yet fully delineated.Previously, we reported that transforming growth factor β (TGF-β) treatment enhanced RSV replication (30). TGF-β is a pleiotropic cytokine with diverse effects on T-cell differentiation and immune regulation and potent anti-inflammatory functions (21, 27, 33, 45). In the lung microenvironment TGF-β inhibits cell proliferation, induces mucus secretion, and regulates airway fibrosis and remodeling (2, 5, 6, 20, 23, 34, 39, 46), all of which are hallmarks of chronic asthma. Specifically, it has been reported that TGF-β expression is elevated in bronchoalveolar lavage fluids and lung tissue of asthmatic patients (9, 32, 48).In addition, genetic studies have found an association between asthma phenotype and TGF-β (19, 26, 38, 43). These studies have identified several single-nucleotide polymorphisms (C509T, T869C, and G915C) in the promoter and coding region of TGF-β that contributed to the increase in gene expression and are significantly associated with childhood wheezing, asthma diagnosis, and asthma severity. Despite this correlation between TGF-β and asthma, the interaction between this key cytokine and respiratory viral infection is poorly understood.A well-known function of TGF-β is the regulation of cell cycle progression. Activation of TGF-β-induced signaling pathways promotes cell cycle arrest in both the G0/G1 and G2/M phases of the cell cycle (7, 8, 25, 29, 40, 42, 44). In the current study, our data showed that TGF-β induction of cell cycle arrest was beneficial to RSV replication. The association of cell cycle arrest with RSV replication was determined by using three different pharmacological inhibitors of cell cycle progression, which enhanced RSV replication. Interestingly, RSV infection alone resulted in secretion of active TGF-β. Treatment of epithelial cells with anti-TGF-β or a specific inhibitor of TGF-β receptor (TGF-βR) signaling resulted in a reduction in RSV replication.In the current study, our data uncover a new pathway for virus regulation of the cell cycle. These findings support our hypothesis that RSV regulates and utilizes TGF-β in lung epithelium to enhance its replication, which may contribute to the physiological changes in the lung leading to immune dysregulation, asthma development, and exacerbations.  相似文献   
6.
7.
Hypomelanosis of Ito is a rare neurocutaneous syndrome, characterized by streaks and swirls of hypopigmentation arranged in a Blaschkoid pattern. Other associated anomalies are observed. We report a case of a male cynomolgus monkey (Macaca fascicularis) who presented the characteristic of hypomelanosis of Ito with palmoplantar involvement and polythelia.  相似文献   
8.
This study describes five programs that may be used on compact, low-cost programmable calculators with adequate memory and sufficient numbers of program steps to compute cardiorespiratory variables. These short programs are especially useful in the operating room and at the bedside.  相似文献   
9.
Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.31×10−109); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.52×10−9) and by 15.57-fold (P = 0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ΔCNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number.  相似文献   
10.
RNA editing in kinetoplastid mitochondria inserts and deletes uridylates at multiple sites in pre-mRNAs as directed by guide RNAs. This occurs by a series of steps that are catalyzed by endoribonuclease, 3'-terminal uridylyl transferase, 3'-exouridylylase, and RNA ligase activities. A multiprotein complex that contains these activities and catalyzes deletion editing in vitro was enriched from Trypanosoma brucei mitochondria by sequential ion-exchange and gel filtration chromatography, followed by glycerol gradient sedimentation. The complex size is approximately 1,600 kDa, and the purified fraction contains 20 major polypeptides. A monoclonal antibody that was generated against the enriched complex reacts with an approximately 49-kDa protein and specifically immunoprecipitates in vitro deletion RNA editing activity. The protein recognized by the antibody was identified by mass spectrometry, and the corresponding gene, designated TbMP52, was cloned. Recombinant TbMP52 reacts with the monoclonal antibody. Another novel protein, TbMP48, which is similar to TbMP52, and its gene were also identified in the enriched complex. These results suggest that TbMP52 and TbMP48 are components of the RNA editing complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号