首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   17篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   3篇
  2012年   3篇
  2011年   12篇
  2010年   4篇
  2009年   3篇
  2008年   8篇
  2007年   1篇
  2006年   4篇
  2005年   7篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
1.
The development of alien addition lines is important both for transferring useful genes from related species into common wheat and for studying the relationship between alien chromosomes and those of wheat. Roegneria ciliaris (2n=4x=28, ScScYcYc) is reported to be a potential source of resistance to wheat scab, which may be useful in wheat improvement. The amphiploid common wheat-R. ciliaris and BC1F7 or BC2F6 derivatives were screened by C-banding, genomic in situ hybridization (GISH), fluorescent in situ hybridization (FISH) and restriction fragment length polymorphism (RFLP) for the presence of R. ciliaris chromatin introgressed into wheat. Six lines were identified as disomic chromosome additions (DA), one as a ditelosomic addition (Dt), two as double disomic additions (dDA) and one as a monosomic chromosome addition (MA). RFLP analysis using wheat homoeologous group-specific clones indicated that the R. ciliaris chromosomes involved in these lines belong to groups 1, 2, 3, 5 and 7. The genomic affinities of the added R. ciliaris chromosomes were determined by FISH analysis using the repetitive sequence pCbTaq4.14 as a probe. These data suggest that the R. ciliaris chromosomes in five lines belong to the Sc genome. Based on the molecular cytogenetic data, the lines are designated as DA2Sc#1, Dt2Sc#1L, DA3Sc#1, dDA1Sc#2+5Yc#1, DA5Yc#1, DA7Sc#1, DA7Yc#1 and MA?Yc#1. Based on the present and previous work, 8 of the 14 chromosomes of R. ciliaris have been transferred into wheat.  相似文献   
2.
3.
4.
Polymer:fullerene blends were screened in a combinatorial approach using inkjet printing thin film libraries for photovoltaic devices. The application of inkjet printing enabled a fast and simple experimental workflow from film preparation to the study of structure‐property‐relationships with a very high material efficiency. Inkjet printing requires less material for the preparation of thin film libraries in comparison to other dispensing techniques, like spin‐coating. Two polymers (PCPDTBT, PSBTBT) and two fullerene derivatives (mono‐PCBM, bis‐PCBM) were investigated in various blend ratios, concentrations, solvent ratios, and film thicknesses. Morphological and optical properties of the inkjet printed films were investigated and compared with spin‐coated films. This study shows the principle of an experimental setup from solution preparation to film characterization for the combinatorial investigation of large polymer:fullerene libraries.  相似文献   
5.
The emergence of the highly virulent Ug99 race complex of the stem rust fungus (Puccinia graminis Pers. f. sp. tritici Eriks. and Henn.) threatens wheat (Triticum aestivum L.) production worldwide. One of the effective genes against the Ug99 race complex is Sr44, which was derived from Thinopyrum intermedium (Host) Barkworth and D.R. Dewey and mapped to the short arm of 7J (designated 7J#1S) present in the noncompensating T7DS-7J#1L?7J#1S translocation. Noncompensating wheat-alien translocations are known to cause genomic duplications and deficiencies leading to poor agronomic performance, precluding their direct use in wheat improvement. The present study was initiated to produce compensating wheat-Th. intermedium Robertsonian translocations with Sr44 resistance. One compensating RobT was identified consisting of the wheat 7DL arm translocated to the Th. intermedium 7J#1S arm resulting in T7DL?7J#1S. The T7DL?7J#1S stock was designated as TA5657. The 7DL?7J#1S stock carries Sr44 and has resistance to the Ug99 race complex. This compensating RobT with Sr44 resistance may be useful in wheat improvement. In addition, we identified an unnamed stem rust resistance gene located on the 7J#1L arm that confers resistance not only to Ug99, but also to race TRTTF, which is virulent to Sr44. However, the action of the second gene can be modified by the presence of suppressors in the recipient wheat cultivars.  相似文献   
6.
Sequences in the 5' and 3' termini of plus-strand RNA viruses harbor cis-acting elements important for efficient translation and replication. In case of the hepatitis C virus (HCV), a plus-strand RNA virus of the family Flaviviridae, a 341-nucleotide-long nontranslated region (NTR) is located at the 5' end of the genome. This sequence contains an internal ribosome entry site (IRES) that is located downstream of an about 40-nucleotide-long sequence of unknown function. By using our recently developed HCV replicon system, we mapped and characterized the sequences in the 5' NTR required for RNA replication. We show that deletions introduced into the 5' terminal 40 nucleotides abolished RNA replication but only moderately affected translation. By generating a series of replicons with HCV-poliovirus (PV) chimeric 5' NTRs, we could show that the first 125 nucleotides of the HCV genome are essential and sufficient for RNA replication. However, the efficiency could be tremendously increased upon the addition of the complete HCV 5' NTR. These data show that (i) sequences upstream of the HCV IRES are essential for RNA replication, (ii) the first 125 nucleotides of the HCV 5' NTR are sufficient for RNA replication, but such replicon molecules are severely impaired for multiplication, and (iii) high-level HCV replication requires sequences located within the IRES. These data provide the first identification of signals in the 5' NTR of HCV RNA essential for replication of this virus.  相似文献   
7.

Key message

A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement.

Abstract

To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1U-6U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.  相似文献   
8.
Switchgrass is considered one of the most promising energy crops. However, breeding of elite switchgrass cultivars is required to meet the challenges of large scale and sustainable biomass production. As a native perennial adapted to North America, switchgrass has lowland and upland ecotypes, where most lowland ecotypes are tetraploid (2n?=?4x?=?36), and most upland ecotypes are predominantly octoploid (2n?=?8x?=?72). Hybridization between lowland and upland switchgrass plants could identify new cultivars with heterosis. However, crossing between tetraploid and octoploid switchgrass is rare in nature. Therefore, in order to break down the cross incompatibility barrier between tetraploid lowland and octoploid upland switchgrass lines, we developed autoployploid switchgrass lines from an anueploid lowland cv. Alamo. In this study, colchicine was used in liquid and solid mediums to chemically induce chromosome doubling in embryogenic calli derived from cv. Alamo. Thirteen autopolyploid switchgrass lines were regenerated from seedlings and identified using flow cytometry. The autoplyploid switchgrass plants exhibited increased stomata aperture and stem size in comparison with the cv. Alamo. The most autooplyploid plants were regenerated from switchgrass calli that were treated with 0.04 % colchicine in liquid medium for 13 days. One autopolyploid switchgrass line, VT8-1, was successfully crossed to the octoploid upland cv. Blackwell. The autoployploid and the derived inter-ecotype hybrids were confirmed by in situ hybridization and molecular marker analysis. Therefore, the results of this study show that an autopolyploid, generated by chemically induced chromosome doubling of lowland cv. Alamo, is cross compatible with upland octoploid switchgrass cultivars. The outcome of this study may have significant applications in switchgrass hybrid breeding.  相似文献   
9.
10.
Flaviviruses require complementarity between the 5' and 3' ends of the genome for RNA replication. For mosquito-borne flaviviruses, the cyclization sequences (CS) and upstream of AUG region (UAR) elements at the genomic termini are necessary for viral RNA replication, and a third motif, the downstream of AUG region (DAR), was recently designated for dengue virus. The 3' DAR sequence is also part of a hairpin (HP-3'SL), and both complementarity between 5' and 3' DAR motifs and formation of the HP-3'SL in the absence of the 5' end are conserved among mosquito-borne flaviviruses. Using West Nile virus as a model, we demonstrate that 5'-3' DAR complementarity and HP-3'SL formation are essential for viral RNA replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号