首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   2篇
  2002年   1篇
  1999年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
2.
B Hambly  K Franks    R Cooke 《Biophysical journal》1991,59(1):127-138
Electron paramagnetic resonance (EPR) spectroscopy has been used to study the angular distribution of a spin label attached to rabbit skeletal muscle myosin light chain 2. A cysteine reactive spin label, 3-(5-fluoro-2,4-dinitroanilino)-2,2,5,5- tetramethyl-1-pyrrolidinyloxy (FDNA-SL) was bound to purified LC2. The labeled LC2 was exchanged into glycerinated muscle fibers and into myosin and its subfragments. Analysis of the spectra of labeled fibers in rigor showed that the probe was oriented with respect to the fiber axis, but that it was also undergoing restricted rotations. The motion of the probe could be modeled assuming rapid rotational diffusion (rotational correlation time faster than 5 ns) within a "cone" whose full width was 70 degrees. Very different spectra of rigor fibers were obtained with the fiber oriented parallel and perpendicular to the magnetic field, showing that the centroid of each cone had the same orientation for all myosin heads, making an angle of approximately 74 degrees to the fiber axis. Binding of light chains or labeled myosin subfragment-1 to ion exchange heads immobilized the probes, showing that most of the motion of the probe arose from protein mobility and not from mobility of the probe relative to the protein. Relaxed labeled fibers produced EPR spectra with a highly disordered angular distribution, consistent with myosin heads being detached from the thin filament and undergoing large angular motions. Addition of pyrophosphate, ADP, or an ATP analogue (AMPPNP), in low ionic strength buffer where these ligands do not dissociate cross-bridges from actin, failed to perturb the rigor spectrum. Applying static strains as high as 0.16 N/mm2 to the labeled rigor fibers also failed to change the orientation of the spin label. Labeled light chain was exchanged into myosin subfragment-1 (S1) and the labeled S1 was diffused into fibers. EPR spectra of these fibers had a component similar to that seen in the spectra of fibers into which labeled LC2 had been exchanged directly. However, the fraction of disordered probes was greater than seen in fibers. In summary, the above data indicate that the region of the myosin head proximal to the thick filament is ordered in rigor, and disordered in relaxation.  相似文献
3.
T Palm  K Sale  L Brown  H Li  B Hambly  P G Fajer 《Biochemistry》1999,38(40):13026-13034
The relative movement of the catalytic and regulatory domains of the myosin head (S1) is likely to be the force generating conformational change in the energy transduction of muscle [Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., and Milligan, R. A. (1993) Science 261, 58-65]. To test this model we have measured, using frequency-modulated FRET, three distances between the catalytic domain and regulatory domains and within the regulatory domain of myosin. The donor/acceptor pairs included MHC cys707 and ELC cys177; ELC cys177 and RLC cys154; and ELC cys177 and gizzard RLC cys108. The IAEDANS (donor) or acceptor (DABMI or IAF) labeled light chains (ELC and RLC) were exchanged into monomeric myosin and the distances were measured in the putative prepower stroke states (in the presence of MgATP or ADP/AlF(4-)) and the postpower stroke states (ADP and the absence of nucleotides). For each of the three distances, the donor/acceptor pairs were reversed to minimize uncertainty in the distance measured, arising from probe orientational factors. The distances obtained from FRET were in close agreement with the distances in the crystal structure. Importantly, none of the measured distances varied by more than 2 A, putting a strong constraint on the extent of conformational changes within S1. The maximum axial movement of the distal part of myosin head was modeled using FRET distance changes within the myosin head reported here and previously. These models revealed an upper bound of 85 A for a swing of the regulatory domain with respect to the catalytic domain during the power stroke. Additionally, an upper bound of 22 A could be contributed to the power stroke by a reorientation of RLC with respect to the ELC during the power stroke.  相似文献
4.
B Hambly  K Franks    R Cooke 《Biophysical journal》1992,63(5):1306-1313
We have measured the orientation of a region of the myosin head, close to the junction with the rod, during active force generation. Paramagnetic probes were attached specifically to a reactive cysteine (Cys 125) of purified myosin light chain 2 (LC2) and exchanged into myosin heads in glycerinated rabbit psoas muscle. Electron paramagnetic resonance spectroscopy was used to monitor the orientation of the probes. Previous work has shown that the LC2 bound spin probes are significantly ordered in rigor and muscle in the presence of adenosine diphosphate (ADP). In contrast, there is a nearly random angular distribution in relaxed muscle. We show here that during the generation of isometric tension, all of the LC2 bound spin probes (98 +/- 1.6%) show an angular distribution similar to that of relaxed muscle. These findings contrast with results obtained from probes attached to Cys 707 on the cross-bridge, located close to the actin binding site, where, during active force generation, a proportion of the spin probes were ordered as in rigor, whereas the remaining probes were disordered as in relaxation. To test the hypothesis that this ordered component is due to modification of Cys 707, we measured the spectra obtained from probes attached to LC2 in fibers modified at Cys 707. The modification of Cys 707 did not produce an ordered component in these spectra. The absence of an ordered component at the LC2 site limits the populations of some states in active fibers. An actin/myosin/ADP state is thought to be the major force-producing state. Our present results show that the populations of states with ordered probes on LC2 are < 2% in active fibers; thus, the major force-producing state is different from the one obtained by addition of ADP to rigor fibers.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号