首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2134篇
  免费   196篇
  国内免费   134篇
  2023年   23篇
  2022年   23篇
  2021年   114篇
  2020年   74篇
  2019年   75篇
  2018年   86篇
  2017年   73篇
  2016年   96篇
  2015年   157篇
  2014年   157篇
  2013年   180篇
  2012年   207篇
  2011年   201篇
  2010年   110篇
  2009年   91篇
  2008年   102篇
  2007年   76篇
  2006年   73篇
  2005年   57篇
  2004年   42篇
  2003年   42篇
  2002年   48篇
  2001年   33篇
  2000年   32篇
  1999年   43篇
  1998年   14篇
  1997年   22篇
  1996年   14篇
  1995年   12篇
  1994年   9篇
  1993年   9篇
  1992年   12篇
  1991年   16篇
  1990年   20篇
  1989年   10篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1981年   4篇
  1980年   6篇
  1979年   12篇
  1978年   9篇
  1977年   8篇
  1976年   5篇
  1975年   9篇
  1974年   6篇
  1973年   3篇
  1970年   5篇
排序方式: 共有2464条查询结果,搜索用时 15 毫秒
1.
Hepatitis B virus (HBV) pre-S2 mutant can induce hepatocellular carcinoma (HCC) via the induction of endoplasmic reticulum stress to activate mammalian target of rapamycin (MTOR) signaling. The association of metabolic syndrome with HBV-related HCC raises the possibility that pre-S2 mutant-induced MTOR activation may drive the development of metabolic disorders to promote tumorigenesis in chronic HBV infection. To address this issue, glucose metabolism and gene expression profiles were analyzed in transgenic mice livers harboring pre-S2 mutant and in an in vitro culture system. The pre-S2 mutant transgenic HCCs showed glycogen depletion. The pre-S2 mutant initiated an MTOR-dependent glycolytic pathway, involving the eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), Yin Yang 1 (YY1), and myelocytomatosis oncogene (MYC) to activate the solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1), contributing to aberrant glucose uptake and lactate production at the advanced stage of pre-S2 mutant transgenic tumorigenesis. Such a glycolysis-associated MTOR signal cascade was validated in human HBV-related HCC tissues and shown to mediate the inhibitory effect of a model of combined resveratrol and silymarin product on tumor growth. Our results provide the mechanism of pre-S2 mutant-induced MTOR activation in the metabolic switch in HBV tumorigenesis. Chemoprevention can be designed along this line to prevent HCC development in high-risk HBV carriers.  相似文献   
2.
3.
The optimal sequence of irinotecan and oxaliplatin-based regimens for metastatic colorectal cancer remains unclear. We conducted a population-based observational study by retrospectively reviewing records from Taiwan’s National Health Insurance Research Database to explore this issue. Patients aged ≥20 years with metastatic colorectal cancer newly diagnosed between 2004 and 2008 (n = 9490) were enrolled in current study. Among these 9490 patients, 3895 patients (41.04%) did not receive any chemotherapy within the first three months after catastrophic illness registration. Patients who received best supportive care were older and had higher Charlson comorbidity indexes and incidences of comorbidities than those who received irinotecan-based regimens, oxaliplatin-based regimens, and 5-fluorouracil/capecitabine alone. Patients who received irinotecan followed by oxaliplatin-based regimens and those who received the reverse sequence were further stratified into arm A (n = 542) and arm B (n = 1156), respectively. The median first time to next treatment was not significantly different between arm A and arm B (210 days vs. 196 days; p = 0.17). However, the median second time to next treatment was longer in arm A than in arm B (155 days vs. 123 days; p = 0.006), which translated into a better overall survival (487 days vs. 454 days; p = 0.02). The crossover rate was higher in arm A than in arm B (47.84% vs. 41.61%; p<0.001). Multivariate Cox regression analyses showed that overall survival was comparable between the two chemotherapy sequences (p = 0.27). Our study suggested that irinotecan followed by oxaliplatin-based regimens might be a better chemotherapy treatment option for metastatic colorectal cancer than the reverse sequence given the higher crossover rate and potential overall survival benefit.  相似文献   
4.
5.
It has been reported that the expression and activity of the interferon-inducible, dsRNA-dependent protein kinase, PKR, is increased in mammary carcinoma cell lines and primary tumor samples. To extend these findings and determine how PKR signaling may affect breast cancer cell sensitivity to chemotherapy, we measured PKR expression by immunohistochemical staining of 538 cases of primary breast cancer and normal tissues. Significantly, PKR expression was elevated in ductal, lobular and squamous cell carcinomas or lymph node metastases but not in either benign tumor specimens or cases of inflammation compared to normal tissues. Furthermore, PKR expression was increased in precancerous stages of mammary cell hyperplasia and dysplasia compared to normal tissues, indicating that PKR expression may be upregulated by the process of tumorigenesis. To test the function of PKR in breast cancer, we generated MCF7, T-47D and MDA-MB-231 breast cancer cell lines with significantly reduced PKR expression by siRNA knockdown. Importantly, while knockdown of PKR expression had no effect on cell proliferation under normal growth conditions, MCF7, T-47D or MDA-MB-231 cells with reduced PKR expression or treated with a small molecule PKR inhibitor were significantly less sensitive to doxorubicin or H2O2-induced toxicity compared to control cells. In addition, the rate of eIF2α phosphorylation following treatment with doxorubicin was delayed in breast cancer cell lines with decreased PKR expression. Significantly, treatment of breast cancer lines with reduced PKR expression with either interferon-α, which increases PKR expression, or salubrinal, which increases eIF2α phosphorylation, restored doxorubicin sensitivity to normal levels. Taken together these results indicate that increased PKR expression in primary breast cancer tissues may serve as a biomarker for response to doxorubicin-containing chemotherapy and that future therapeutic approaches to promote PKR expression/activation and eIF2α phosphorylation may be beneficial for the treatment of breast cancer.  相似文献   
6.
7.
8.
9.
S100B, established as prevalent protein of the central nervous system, is a peripheral biomarker for blood-brain barrier disruption and often also a marker of brain injury. However, reports of extracranial sources of S100B, especially from adipose tissue, may confound its interpretation in the clinical setting. The objective of this study was to characterize the tissue specificity of S100B and assess how extracranial sources of S100B affect serum levels. The extracranial sources of S100B were determined by analyzing nine different types of human tissues by ELISA and Western blot. In addition, brain and adipose tissue were further analyzed by mass spectrometry. A study of 200 subjects was undertaken to determine the relationship between body mass index (BMI) and S100B serum levels. We also measured the levels of S100B homo- and heterodimers in serum quantitatively after blood-brain barrier disruption. Analysis of human tissues by ELISA and Western blot revealed variable levels of S100B expression. By ELISA, brain tissue expressed the highest S100B levels. Similarly, Western blot measurements revealed that brain tissue expressed high levels of S100B but comparable levels were found in skeletal muscle. Mass spectrometry of brain and adipose tissue confirmed the presence of S100B but also revealed the presence of S100A1. The analysis of 200 subjects revealed no statistically significant relationship between BMI and S100B levels. The main species of S100B released from the brain was the B-B homodimer. Our results show that extracranial sources of S100B do not affect serum levels. Thus, the diagnostic value of S100B and its negative predictive value in neurological diseases in intact subjects (without traumatic brain or bodily injury from accident or surgery) are not compromised in the clinical setting.  相似文献   
10.
The migration of Schwann cells is critical for development of peripheral nervous system and is essential for regeneration and remyelination after nerve injury. Although several factors have been identified to regulate Schwann cell migration, intrinsic migratory properties of Schwann cells remain elusive. In this study, based on time-lapse imaging of single isolated Schwann cells, we examined the intrinsic migratory properties of Schwann cells and the molecular cytoskeletal machinery of soma translocation during migration. We found that cultured Schwann cells displayed three motile phenotypes, which could transform into each other spontaneously during their migration. Local disruption of F-actin polymerization at leading front by a Cytochalasin D or Latrunculin A gradient induced collapse of leading front, and then inhibited soma translocation. Moreover, in migrating Schwann cells, myosin II activity displayed a polarized distribution, with the leading process exhibiting higher expression than the soma and trailing process. Decreasing this front-to-rear difference of myosin II activity by frontal application of a ML-7 or BDM (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation, whereas, increasing this front-to-rear difference of myosin II activity by rear application of a ML-7 or BDM gradient or frontal application of a Caly (myosin II activator) gradient accelerated soma translocation. Taken together, these results suggest that during migration, Schwann cells display malleable motile phenotypes and the extension of leading front dependent on F-actin polymerization pulls soma forward translocation mediated by myosin II activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号