首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   23篇
  国内免费   20篇
  2023年   12篇
  2022年   10篇
  2021年   23篇
  2020年   14篇
  2019年   28篇
  2018年   25篇
  2017年   9篇
  2016年   12篇
  2015年   16篇
  2014年   28篇
  2013年   29篇
  2012年   28篇
  2011年   15篇
  2010年   7篇
  2009年   9篇
  2008年   9篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
  1992年   1篇
排序方式: 共有302条查询结果,搜索用时 109 毫秒
1.
本文对龙栖山自然保护区园林植物资源进行了调查,首次确定该区园林植物资源状况,并对其今后的合理开发利用提出看法。  相似文献   
2.
3.
4.
Background: The pandemic of novel coronavirus disease 2019 (COVID-19) has become a serious public health crisis worldwide. The symptoms of COVID-19 vary from mild to severe among different age groups, but the physiological changes related to COVID-19 are barely understood.Methods: In the present study, a high-resolution mass spectrometry (HRMS)-based lipidomic strategy was used to characterize the endogenous plasma lipids for cured COVID-19 patients with different ages and symptoms. These patients were further divided into two groups: those with severe symptoms or who were elderly and relatively young patients with mild symptoms. In addition, automated lipidomic identification and alignment was conducted by LipidSearch software. Multivariate and univariate analyses were used for differential comparison.Results: Nearly 500 lipid compounds were identified in each cured COVID-19 group through LipidSearch software. At the level of lipid subclasses, patients with severe symptoms or elderly patients displayed dramatic changes in plasma lipidomic alterations, such as increased triglycerides and decreased cholesteryl esters (ChE). Some of these differential lipids might also have essential biological functions. Furthermore, the differential analysis of plasma lipids among groups was performed to provide potential prognostic indicators, and the change in signaling pathways.Conclusions: Dyslipidemia was observed in cured COVID-19 patients due to the viral infection and medical treatment, and the discharged patients should continue to undergo consolidation therapy. This work provides valuable knowledge about plasma lipid markers and potential therapeutic targets of COVID-19 and essential resources for further research on the pathogenesis of COVID-19.  相似文献   
5.
6.
We previously found that endoplasmic reticulum stress (ERS) might be exhibited in the conventional protocol of the primary culture of neonate rat myocardial cells (NRMCs) and that the high glucose concentration (25 mmol/L) in the culture medium might be the cause. Here, we investigated if the high concentration of glucose might influence ERS in myocardial cells during culture. GRP78 expression (ERS marker) was similar in groups with tunicamycin (TM) and without TM in high glucose cultured cells (p?>?0.01). Different glucose concentrations elicited different GRP78 expressions according to analyses of protein and RNA levels, which showed ERS in H/H groups. Finally, we found that GRP78 expression was higher in TM groups compared with M/M groups (p?<?0.01). The conventional high-glucose culture media during primary culture of NRMCs induced ERS. We propose that medium-glucose culture media should be used and describe an improved protocol for the primary culture of NRMCs.  相似文献   
7.
8.
9.
Smilacaceae, composed of Smilax and Heterosmilax, are a cosmopolitan family of > 200 species of mostly climbing monocots with alternate leaves characterized by reticulate venation, a pair of petiolar tendrils and usually prickly stems. Although there has been a long history of studying Smilax since Linnaeus named the genus in 1753, the phylogenetic history of this dioecious family remains unclear. Here we present results based on nuclear ribosomal internal transcribed spacer (nrITS) and plastid matK and rpl16 intron DNA sequence data from 125 taxa of Smilacaceae. Our taxon sampling covers all sections of Smilax and Heterosmilax and major distribution zones of the family; species from Ripogonaceae and Philesiaceae are used as outgroups. Our molecular analysis indicates that phylogenetic relationships largely contradict the traditional morphological classification of the family, instead showing a conspicuous geographical pattern among the species clades. The previously recognized genus Heterosmilax was found to be embedded in Smilax. Species in the family are separated into primarily New World and Old World clades, except for a single species lineage, Smilax aspera, that is sister to the remaining species of the family, but with poor statistical support. Ancestral character state reconstructions and examination of distribution patterns among the clades provide important information for future taxonomic revisions and historical biogeography of the group. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 535–548.  相似文献   
10.
TRAIL is a member of the tumor necrosis factor family that selectively induces cancer cell apoptosis. However, gastric cancer cells are insensitive to TRAIL. Our and others studies showed that the inhibition of EGFR pathway activation could increase the sensitivity of TRAIL in cancer cells. But the detailed mechanism is not fully understood. In the present study, compared with TRAIL or cetuximab (an anti-EGFR monoclonal antibody) alone, treatment with the TRAIL/cetuximab combination significantly promoted death receptor 4 (DR4) clustering as well as the translocation of both DR4 and Fas-associated death domain-containing protein (FADD) into lipid rafts. This in turn resulted in caspase-8 cleavage and the formation of the death-inducing signaling complex (DISC) in these lipid rafts. Cholesterol-depletion with methyl-β-cyclodextrin partially prevented DR4 clustering and DISC formation, and thus partially reversed apoptosis induced by the TRAIL/cetuximab dual treatment. These results indicate that cetuximab increases TRAIL-induced gastric cancer cell apoptosis at least partially through the promotion of DISC formation in lipid rafts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号