首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79553篇
  免费   6579篇
  国内免费   6281篇
  2024年   37篇
  2023年   900篇
  2022年   1096篇
  2021年   3768篇
  2020年   2664篇
  2019年   3383篇
  2018年   3294篇
  2017年   2434篇
  2016年   3407篇
  2015年   5054篇
  2014年   5977篇
  2013年   6336篇
  2012年   7437篇
  2011年   6815篇
  2010年   4209篇
  2009年   3649篇
  2008年   4479篇
  2007年   3963篇
  2006年   3454篇
  2005年   2941篇
  2004年   2494篇
  2003年   2148篇
  2002年   1901篇
  2001年   1432篇
  2000年   1224篇
  1999年   1228篇
  1998年   741篇
  1997年   713篇
  1996年   635篇
  1995年   585篇
  1994年   549篇
  1993年   390篇
  1992年   579篇
  1991年   437篇
  1990年   346篇
  1989年   307篇
  1988年   216篇
  1987年   223篇
  1986年   164篇
  1985年   162篇
  1984年   98篇
  1983年   84篇
  1982年   67篇
  1981年   51篇
  1980年   42篇
  1979年   46篇
  1978年   25篇
  1977年   20篇
  1975年   28篇
  1974年   22篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
1.
Recently we have studied thermodynamics of membrane-mediated β-amyloid formation in equilibrium experiments using penetratin-lipid mixtures. The results showed that penetratin bound to the membrane interface in the α-helical conformation when the peptide/lipid (P/L) ratios were below a lipid-dependent critical value P/L. When P/L reached P/L, small β-aggregates emerged, which served as the nuclei for large β-aggregates. Here we studied the corresponding kinetic process to understand the potential barriers for the membrane-mediated β-amyloid formation. We performed kinetic experiments using giant unilamellar vesicles made of 7:3 DOPC/DOPG. The observed time behavior of individual giant unilamellar vesicles, although complex, exhibited the physical effects seen in equilibrium experiments. Most interestingly, a potential barrier appeared to block penetratin from translocating across the bilayer. As a result, the kinetic value for the critical threshold P/L is roughly one-half of the value measured in equilibrium where peptides bind symmetrically on both sides of lipid bilayers. We also investigated the similarity and differences between the charged and neutral lipids in their interactions with penetratin. We reached an important conclusion that the bound states of peptides in lipid bilayers are largely independent of the charge on the lipid headgroups.  相似文献   
2.
3.
4.
A recombinant cell line (NIH3T3:pLtkSN) was made by infecting parental cells (NIH3T3) with a recombinant retrovirus (pLtkSN) encoding herpes simplex virus thymidine kinase (HSVtk) gene. The cells expressing HSVtk (NIH3T3:pLtkSN) grew 2.3 times more than the parental cells (NIH3T3) in Dulbecco's Modified Eagles Media containing 10% (v/v) horse serum. The NIH3T3:pLtkSN cells also showed a significant enhancement in the maximal cell concentration and the specific growth rate even at 2.5% serum concentration. The specific O2 uptake rate of NIH3T3 was 2.1 times greater than that of NIH3T3:pLtkSN. Under both O2-limited and O2-unlimited conditions, it appears that HSVtk plays an important role in enhancing the growth characteristics of animal cells.  相似文献   
5.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
6.
环氧基是一个非常活跃的基团,它能与酶、蛋白质和核酸等生物分子发生反应形成共价键,有利于生物分子的固定化。经共价结合法固定化的酶其稳定性及重复使用性可得到显著提高。用环氧树脂ES-103B为载体采用共价结合法对海洋细菌Bacillus sp. DL-2的胞外蛋白酶进行固定化,经过单因素实验优化条件得出最优固定化条件为:p H 8. 0的胞外蛋白酶溶液,25 g/L的ES-103B,45℃下反应8h。采用此最优条件下的固定化酶拆分(±)-乙酸苏合香酯制备出了e. e. p=97. 5%的(R)-1-苯乙醇(产率为45. 0%)和e. e. s=99. 2%的(S)-乙酸苏合香酯(产率为83. 9%)。该固定化酶拆分(±)-乙酸苏合香酯在重复使用8次后制备出的(R)-1-苯乙醇的e. e. p仍大于90%,且固定化胞外蛋白酶在4℃下具有较好的储存稳定性。  相似文献   
7.
Phase-sensitive two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 in aqueous deuterium oxide solution at four mixing times were quantified to give all nonoverlapping cross-peak intensities. A structural model for [d(GGTATACC)]2 was built in which the GG- and -CC moieties were in the B-DNA form, while the middle -TATA- moiety was in the wrinkled-D form (BDB model). This model was subjected to energy refinement by molecular mechanics calculations with the program AMBER. Counterions (Na+) were added to neutralize the charges, and water molecules were placed bridging across the minor groove. A complete relaxation matrix analysis was used to calculate two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 from the above models (before and after energy refinement) and from four other [d(GGTATACC)]2 structural models: regular A, crystalline A, regular B, and energy-minimized B. Among them, the energy-minimized BDB model yielded a set of theoretical spectra that gave the best fit to the experimental spectra. It was also the energetically most stable. Therefore, it is a good representation of the ensemble- and time-averaged structure of the octamer in solution. This model has backbone torsion angles similar to those of B-form DNA in the GG- and -CC moieties and torsion angles similar to those of wrinkled D form DNA in the -TATA- moiety. The base stacking and base pairing are not interrupted at the junctions between the two structural moieties. Its minor groove is narrower than that of B DNA, and the solvent-accessible surface of the minor groove forms a closed hydration tunnel in the middle -TATA- segment.  相似文献   
8.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号