首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5062篇
  免费   365篇
  2021年   32篇
  2020年   34篇
  2019年   52篇
  2018年   70篇
  2017年   78篇
  2016年   117篇
  2015年   163篇
  2014年   221篇
  2013年   276篇
  2012年   299篇
  2011年   297篇
  2010年   215篇
  2009年   204篇
  2008年   322篇
  2007年   298篇
  2006年   298篇
  2005年   285篇
  2004年   284篇
  2003年   215篇
  2002年   252篇
  2001年   103篇
  2000年   107篇
  1999年   110篇
  1998年   63篇
  1997年   60篇
  1996年   44篇
  1995年   42篇
  1994年   52篇
  1993年   37篇
  1992年   69篇
  1991年   58篇
  1990年   71篇
  1989年   60篇
  1988年   55篇
  1987年   50篇
  1986年   46篇
  1985年   41篇
  1984年   36篇
  1983年   35篇
  1982年   32篇
  1981年   18篇
  1980年   16篇
  1979年   34篇
  1978年   27篇
  1977年   18篇
  1976年   13篇
  1975年   20篇
  1974年   20篇
  1973年   13篇
  1968年   9篇
排序方式: 共有5427条查询结果,搜索用时 15 毫秒
1.
ADP-ribosylation factor (Arf) 1 is thought to affect the morphologies of organelles, such as the Golgi apparatus, and regulate protein trafficking pathways. Mice have six Arf isoforms. In knockdown experiments with HeLa cells, no single Arf isoform among Arf1–5 is required for organelle morphologies or any membrane trafficking step. This suggests that the cooperation of two or more Arfs is a general feature. Although many cell biological and biochemical analyses have proven the importance of Arf1, the physiological roles of Arf1 in mice remain unknown. To investigate the activity of Arf1 in vivo, we established Arf1-deficient mice. Arf−/− blastocysts were identified at the expected Mendelian ratio. The appearance of these blastocysts was indistinguishable from that of wild-type and Arf+/− blastocysts, and they grew normally in an in vitro culture system. However, Arf−/− embryos were degenerated at E5.5, and none survived to E12.5, suggesting that they died soon after implantation. These data establish for the first time that the Arf1 gene is indispensable for mouse embryonic development after implantation.  相似文献   
2.
Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis.  相似文献   
3.
4.
A phosphonoglycosphingolipid, named F-21, was found in the nervous system of Aplysia kurodai by two-dimensional thin-layer chromatography (Abe, S., Araki, S., and Satake, M. (1986) Biomed. Res. (Tokyo) 7, 47-51). F-21 was isolated from the nervous tissue of Aplysia in this study, and its chemical structure was characterized as follows, where 2-AEP is 2-aminoethylphosphonate. (Formula; see text) The major aliphatic components of the ceramide portion were palmitic acid (75%), stearic acid (22%), octadeca-4-sphingenine (43%), and anteisononadeca-4-sphingenine (54%). Some information on the steric interactions in the sugar moiety was obtained by NMR spectroscopy. The ring protons of the internal galactose, H1, H3, and H4 and the H3 of the side chain galactose were shifted, as compared to the corresponding protons of dephosphonylated F-21. This may indicate the interactions between the 2-AEP residue of N-acetylgalactosamine and the internal galactose and between the N-acetyl group of N-acetylgalactosamine and the side chain galactose, implying a sterically restricted and unique structure that may relate to some biological functions of F-21.  相似文献   
5.
Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV) oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP) modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK) or 3-isobutyl-1-methylxanthine (IBMX) to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF) activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.  相似文献   
6.
This case-control study aimed to assess the risk factors for death from influenza A(H1N1)pdm09 in patients with laboratory confirmation, who had severe acute respiratory illness-SARI and were hospitalized between June 28th and August 29th 2009, in the metropolitan regions of São Paulo and Campinas, Brazil. Medical charts of all the 193 patients who died (cases) and the 386 randomly selected patients who recovered (controls) were investigated in 177 hospitals. Household interviews were conducted with those who had survived and the closest relative of those who had died. 73.6% of cases and 38.1% of controls were at risk of developing influenza-related complications. The 18-to-59-year age group (OR = 2.31, 95%CI: 1.31–4.10 (reference up to 18 years of age)), presence of risk conditions for severity of influenza (OR = 1.99, 95%CI: 1.11–3.57, if one or OR = 6.05, 95%CI: 2.76–13.28, if more than one), obesity (OR = 2.73, 95%CI: 1.28–5.83), immunosuppression (OR = 3.43, 95%CI: 1.28–9.19), and search for previous care associated with the hospitalization (OR = 3.35, 95%CI: 1.75–6.40) were risk factors for death. Antiviral treatment performed within 72 hours of the onset of symptoms (OR = 0.17, 95%CI: 0.08–0.37, if within 48hours, and OR = 0.30, 95%CI: 0.11–0.81, if between 48 and 72 hours) was protective against death. The identification of high-risk patients and early treatment are important factors for reducing morbi-mortality from influenza.  相似文献   
7.
Major depressive disorder (MDD) is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS) as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC) of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a) may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of physiological homeostasis in humans.  相似文献   
8.
Leaf tissues of plants usually contain several types of idioblasts, defined as specialized cells whose shape and contents differ from the surrounding homogeneous cells. The spatial patterning of idioblasts, particularly of trichomes and guard cells, across the leaf epidermis has received considerable attention as it offers a useful biological model for studying the intercellular regulation of cell fate and patterning. Excretory idioblasts in the leaves of the aquatic monocotyledonous plant Egeria densa produced light blue autofluorescence when irradiated with ultraviolet light. The use of epifluorescence microscopy to detect this autofluorescence provided a simple and convenient method for detecting excretory idioblasts and allowed tracking of those cells across the leaf surfaces, enabling quantitative measurement of the clustering and spacing patterns of idioblasts at the whole leaf level. Occurrence of idioblasts was coordinated along the proximal–distal, medial–lateral, and adaxial–abaxial axes, producing a recognizable consensus spatial pattern of idioblast formation among fully expanded leaves. Idioblast clusters, which comprised up to nine cells aligned along the proximal–distal axis, showed no positional bias or regularity in idioblast-forming areas when compared with singlet idioblasts. Up to 75% of idioblasts existed as clusters on every leaf side examined. The idioblast-forming areas varied between leaves, implying phenotypic plasticity. Furthermore, in young expanding leaves, autofluorescence was occasionally detected in a single giant vesicle or else in one or more small vesicles, which eventually grew to occupy a large portion of the idioblast volume as a central vacuole. Differentiation of vacuoles by accumulating the fluorescence substance might be an integral part of idioblast differentiation. Red autofluorescence from chloroplasts was not detected in idioblasts of young expanding leaves, suggesting idioblast differentiation involves an arrest in chloroplast development at a very early stage, rather than transdifferentiation of chloroplast-containing epidermal cells.  相似文献   
9.
The DNA damage response (DDR) triggers widespread changes in gene expression, mediated partly by alterations in micro(mi) RNA levels, whose nature and significance remain uncertain. Here, we report that miR-34a, which is upregulated during the DDR, modulates the expression of protein phosphatase 1γ (PP1γ) to regulate cellular tolerance to DNA damage. Multiple bio-informatic algorithms predict that miR-34a targets the PP1CCC gene encoding PP1γ protein. Ionising radiation (IR) decreases cellular expression of PP1γ in a dose-dependent manner. An miR-34a-mimic reduces cellular PP1γ protein. Conversely, an miR-34a inhibitor antagonizes IR-induced decreases in PP1γ protein expression. A wild-type (but not mutant) miR-34a seed match sequence from the 3′ untranslated region (UTR) of PP1CCC when transplanted to a luciferase reporter gene makes it responsive to an miR-34a-mimic. Thus, miR-34a upregulation during the DDR targets the 3′ UTR of PP1CCC to decrease PP1γ protein expression. PP1γ is known to antagonize DDR signaling via the ataxia-telangiectasia-mutated (ATM) kinase. Interestingly, we find that cells exposed to DNA damage become more sensitive – in an miR-34a-dependent manner – to a second challenge with damage. Increased sensitivity to the second challenge is marked by enhanced phosphorylation of ATM and p53, increased γH2AX formation, and increased cell death. Increased sensitivity can be partly recapitulated by a miR-34a-mimic, or antagonized by an miR-34a-inhibitor. Thus, our findings suggest a model in which damage-induced miR-34a induction reduces PP1γ expression and enhances ATM signaling to decrease tolerance to repeated genotoxic challenges. This mechanism has implications for tumor suppression and the response of cancers to therapeutic radiation.  相似文献   
10.
Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flow-dependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号