首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   32篇
  国内免费   1篇
  2023年   5篇
  2022年   6篇
  2021年   16篇
  2020年   10篇
  2019年   20篇
  2018年   18篇
  2017年   13篇
  2016年   13篇
  2015年   21篇
  2014年   28篇
  2013年   39篇
  2012年   41篇
  2011年   25篇
  2010年   21篇
  2009年   21篇
  2008年   22篇
  2007年   21篇
  2006年   21篇
  2005年   19篇
  2004年   20篇
  2003年   24篇
  2002年   12篇
  2001年   12篇
  2000年   10篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1994年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1978年   4篇
  1976年   7篇
  1975年   8篇
  1974年   6篇
  1973年   8篇
  1972年   6篇
  1971年   10篇
  1970年   5篇
  1969年   5篇
  1968年   4篇
  1967年   6篇
  1966年   3篇
排序方式: 共有582条查询结果,搜索用时 15 毫秒
1.
Metastatic Ewing Sarcoma carries a poor prognosis, and novel therapeutics to prevent and treat metastatic disease are greatly needed. Recent evidence demonstrates that tumor-associated macrophages in Ewing Sarcoma are associated with more advanced disease. While some macrophage phenotypes (M1) exhibit anti-tumor activity, distinct phenotypes (M2) may contribute to malignant progression and metastasis. In this study, we show that M2 macrophages promote Ewing Sarcoma invasion and extravasation, pointing to a potential target of anti-metastatic therapy. CNI-1493 is a selective inhibitor of macrophage function and has shown to be safe in clinical trials as an anti-inflammatory agent. In a xenograft mouse model of metastatic Ewing Sarcoma, CNI-1493 treatment dramatically reduces metastatic tumor burden. Furthermore, metastases in treated animals have a less invasive morphology. We show in vitro that CNI-1493 decreases M2-stimulated Ewing Sarcoma tumor cell invasion and extravasation, offering a functional mechanism through which CNI-1493 attenuates metastasis. These data indicate that CNI-1493 may be a safe and effective adjuvant agent for the prevention and treatment of metastatic Ewing Sarcoma.  相似文献   
2.
The aim of the present study was to examine the secretion of biliary components in rats during infusion of increasing doses of either deoxycholic acid, chenodeoxycholic acid or cholic acid and to test the hypothesis that biliary phospholipids may regulate the hepatic bile acid secretory capacity. Analysis of bile samples, collected every 10 min throughout the infusion period showed that there was an elevation of bile acid, phospholipid, cholesterol and alkaline-phosphodiesterase secretion, with all the bile acids, peaking and then gradually declining. Their secretory rates maximum differed and were inversely related to their detergent strength. However, the secretory rates maximum and total output of phospholipids and cholesterol were similar for all bile acids infused. The per cent contribution of phosphatidylcholine to total bile acid-dependent phospholipid secretion was reduced from 84% (in the pre-infusion period) to 59, 46 and 13% at the end of the cholic acid, chenodeoxycholic acid and deoxycholic acid infusions, respectively. This decrease in the per cent contribution of phosphatidylcholine was associated with an increase in the contribution of both sphingomyelin and phosphatidylethanolamine. The biliary phospholipid fatty acid pattern corroborated these changes in the phospholipid classes. Since sphingomyelin and phosphatidylethanolamine are major phospholipids in bile canalicular and other hepatocellular membranes, the marked increase in their secretion in bile during the infusion of high doses of bile acids may indicate solubilization of membrane phospholipids, resulting in membrane structural changes responsible for the reduced excretory function of the liver.  相似文献   
3.
Growth kinetics of Lactobacillus acidophilus under ohmic heating   总被引:1,自引:0,他引:1  
Lactobacillus acidophilus OSU133 was inoculated into MRS broth in a fermenter vessel and incubated at 30, 35, or 45 degrees C with agitation. Incubation temperatures were attained by conventional or ohmic heating. An electrical current at low (15 V) or high (40 V) voltage was used to heat the culture directly during fermentations under ohmic heating. The growth parameters (lag period, minimum generation time, and maximum growth) and changes in pH were determined during fermentation. Metabolic activities (consumption of glucose and production of lactic acid and bacteriocin) were determined during fermentation at 35 degrees C under both heating methods. Lag period for L. acidophilus was affected appreciably by the method of heating, but the magnitude of these changes depended on the fermentation temperature. When fermentation was done at 30 degrees C, lag period decreased by 94% under low-voltage ohmic, compared with conventional, heating methods. Ohmic heating did not change the generation time significantly and caused slight, but significant (p < 0.01) decrease in maximum growth. Therefore, the electric current enhances the early stages, but it inhibits the late stages of growth. Ohmic, compared with conventional, heating resulted in higher final pH and lower bacteriocin activity in the fermented medium. However, ohmic heating at 35 degrees C had minimal effect on glucose utilization and lactic acid production by L. acidophilus. Results show that measurement of the electric current when ohmic heating is done at a constant voltage may be used in monitoring such fermentations. In conclusion, ohmic heating is potentially useful in certain applications related to fermented foods. (c) 1996 John Wiley & Sons, Inc.  相似文献   
4.
The extensive use of nanoparticles (NPs) in diverse applications causes their localization to aquatic habitats, affecting the metabolic products of primary producers in aquatic ecosystems, such as algae. Synthesized calcium oxide nanoparticles (CaO NPs) are of the scarcely studied NPs. Thus, the current work proposed that the exposure to CaO NPs may instigate metabolic pathway to be higher than that of normally growing algae, and positively stimulate algal biomass. In this respect, this research was undertaken to study the exposure effect of CaO NPs (0, 20, 40, 60, 80, and 100 µg mL−1 ) on the growth, photosynthesis, respiration, oxidative stress, antioxidants, and lipid production of the microalga Coccomyxa chodatii SAG 216-2. The results showed that the algal growth concomitant with chlorophyll content, photosynthesis, and calcium content increased in response to CaO NPs. The contents of biomolecules such as proteins, amino acids, and carbohydrates were also promoted by CaO NPs with variant degrees. Furthermore, lipid production was enhanced by the applied nanoparticles. CaO NPs induced the accumulation of hydrogen peroxide, while lipid peroxidation was reduced, revealing no oxidative behavior of the applied nanoparticles on alga. Also, CaO NPs have a triggering effect on the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase. The results recommended the importance of the level of 60 µg mL−1 CaO NPs on lipid production (with increasing percentage of 65% compared to control) and the highest dry matter acquisition of C. chodatii. This study recommended the feasibility of an integrated treatment strategy of CaO NPs in augmenting biomass, metabolic up-regulations, and lipid accumulation in C. chodatii.  相似文献   
5.
6.
Oocytes, eggs and blastomeres of the embryo are special cells that undergo rapid changes in structure and function at developmental transitions. These changes are frequently regulated by cytoplasmic signaling events, particularly at the developmental transition of fertilization, because the genome is largely inactivated at this time. Protein kinase C (PKC) is a signaling agent that acts after the sperm-induced rise in calcium and has a central role in the remodeling of the structure of the egg into the zygote in many species. PKC also acts during other developmental transitions. This kinase serves as a chronometer, which can choreograph the cell's remodeling events in both space and time. Several technical advancements discussed in this review have permitted a better understanding of the actions of PKC.  相似文献   
7.
In 2014, bark cankers were observed on Caucasian alder (Alnus subcordata) trees in Iran. The disease was characterized by a dark watery liquid often exuding from longitudinal cankers in the bark of the tree trunks which stained the surface. Symptomatic tissue from A. subcordata was sampled from a number of sites in the Mazandaran province. Isolations were performed on nutrient agar supplemented with sucrose (SNA) and yielded bacterial colonies that were uniform, round and whitish. The bacterial strains isolated from alder trees in Iran were similar to Brenneria alni based on phenotypic and genotypic (nucleotide sequences of the 16S rRNA, and housekeeping genes gyrB, and infB) characteristics. The pathogenicity of the representative strains was determined by inoculating stem pieces of A. subcordata. All tested strains caused longitudinal necrotic lesions 30 days after inoculation and were re-isolated from this tissue. To our knowledge, this is the first report of the occurrence of B. alni in Iran, and on A. subcordata globally.  相似文献   
8.
Barbershops provide areas for the growth and transfer of bacterial pathogens and thereby have an impact on public health. Barbershops are ideal places for the interactive spread of infections, including community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Here, the work determines the degree of bacterial contamination of hair dryers used in barbershops. The samples were collected in the city of Riyadh, the Kingdom of Saudi Arabia on March 2019. Significant bacterial contamination was seen, with total bacterial count increasing when the hair dryers were run for 20 instead of 10 s. The study shows a high level of bacterial contamination barbershops using hair dryers, with MRSA being isolated in some. The results suggest that high quality filters should be used inside hair dryers and filters, and theses should be cleaned frequently.  相似文献   
9.
Oxidative damage to the vascular endothelial cells may play a crucial role in mediating glucose-induced cellular dysfunction in chronic diabetic complications. The present study was aimed at elucidating the role of glucose-induced alteration of highly inducible heme oxygenase (HO) in mediating oxidative stress in the vascular endothelial cells. We have also investigated the interaction between HO and the nitric oxide (NO) system, and its possible role in alteration of other vasoactive factors.

Human umbilical vein endothelial cells (HUVECs) were exposed to low (5?mmol/l) and high (25?mmol/l) glucose levels. In order to determine the role of HO in endothelial dysfunction and to elucidate a possible interaction between the HO and NO systems, cells were exposed to HO inducer (hemin, 10?μmol/l), HO antagonist (SnPPIX, 10?μmol/l), and NO synthase blocker (l-NAME, 200?μmol/l) with or without NO donor (arginine, 1?mmol/l). mRNA expression of HO and NO isoforms was measured by real time RT-PCR. HO activity was measured by bilirubin production and cellular oxidative stress was assessed by 8-hydroxy-2′-deoxyguanosine (8-OHdG) and nitrotyrosine staining. We also determined the expression of vasoactive factors, endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF).

In the endothelial cells, glucose caused upregulation of HO-1 expression and increased HO activity. A co-stimulatory relationship between HO and NO was observed. Increased HO activity also associated with oxidative DNA and protein damage in the endothelial cells. Furthermore, increased HO activity augmented mRNA expression of vasoactive factors, ET-1 and VEGF. These data suggest that HO by itself and via elaboration of other vasoactive factors may cause endothelial injury and functional alteration. These findings are of importance in the context of chronic diabetic complications.  相似文献   
10.

Introduction

The development of effective treatments for osteoarthritis (OA) has been hampered by a poor understanding of OA at the cellular and molecular levels. Emerging as a disease of the ''whole joint’, the importance of the biochemical contribution of various tissues, including synovium, bone and articular cartilage, has become increasingly significant. Bathing the entire joint structure, the proteomic analysis of synovial fluid (SF) from osteoarthritic shoulders offers a valuable ''snapshot’ of the biologic environment throughout disease progression. The purpose of this study was to identify differentially expressed proteins in early and late shoulder osteoarthritic SF in comparison to healthy SF.

Methods

A quantitative 18O labeling proteomic approach was employed to identify the dysregulated SF proteins in early (n = 5) and late (n = 4) OA patients compared to control individuals (n = 5). In addition, ELISA was used to quantify six pro-inflammatory and two anti-inflammatory cytokines.

Results

Key results include a greater relative abundance of proteins related to the complement system and the extracellular matrix in SF from both early and late OA. Pathway analyses suggests dysregulation of the acute phase response, liver x receptor/retinoid x receptor (LXR/RXR), complement system and coagulation pathways in both early and late OA. The network related to lipid metabolism was down-regulated in both early and late OA. Inflammatory cytokines including interleukin (IL) 6, IL 8 and IL 18 were up-regulated in early and late OA.

Conclusions

The results suggest a dysregulation of wound repair pathways in shoulder OA contributing to the presence of a ''chronic wound’ that progresses irreversibly from early to later stages of OA. Protease inhibitors were downregulated in late OA suggesting uncontrolled proteolytic activity occurring in late OA. These results contribute to the theory that protease inhibitors represent promising therapeutic agents which could limit proteolytic activity that ultimately leads to cartilage destruction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号