首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1592篇
  免费   105篇
  2023年   5篇
  2022年   10篇
  2021年   15篇
  2020年   14篇
  2019年   16篇
  2018年   27篇
  2017年   24篇
  2016年   43篇
  2015年   54篇
  2014年   64篇
  2013年   125篇
  2012年   98篇
  2011年   98篇
  2010年   63篇
  2009年   57篇
  2008年   101篇
  2007年   97篇
  2006年   106篇
  2005年   110篇
  2004年   101篇
  2003年   106篇
  2002年   100篇
  2001年   11篇
  2000年   11篇
  1999年   22篇
  1998年   20篇
  1997年   25篇
  1996年   19篇
  1995年   22篇
  1994年   20篇
  1993年   18篇
  1992年   13篇
  1991年   6篇
  1990年   4篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1985年   8篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   12篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1971年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有1697条查询结果,搜索用时 209 毫秒
1.
Abstract A factor showing inhibitory activity against human gingival fibrolasts was extracted from the cytosol fraction of Actinobacillus actinomycetemcomitans Y4. The activity markedly inhibited the proliferation of human gingival fibrolasts, but had no effect on cell viability or gross morphology. No such activity was found in cytosol fractions from either Porphyromonas gingivalis 381 or Escherichia coli HB101. The extract from A. actinomycetemcomitans Y4 was then purified by anion-exchange chromatography, hydroxyapatite chromatography and gel-filtration chromatography to give a single band on SDS-PAGE with an apparent molecular mass of 65 kDa. The purification ratio was 183-fold with a recovery rate of 5% compared with the crude extract (starting material) when the activity was assessed by direct cell counts.  相似文献   
2.
Asymmetric reduction of 2,6,6,-trimethyl-2-cyclohexene-l,4-dione (4-oxoisophrone) to (6R)-2,2,6-trimethyl-1,4-cyclohexane-dione((3R)-dihydro-4-oxoisophorone) was catalysed by immobilized thermophilic bacteria, Thermomonospora curvata JTS 321. Because of leakage of entrapped cells from gel beads during reactions using culture medium, we optimized the medium to allow the microbial conversion under conditions of controlled cell growth. Of the media screened, liver infusion medium was found to be the most suitable and microbial conversion was achieved without cell leakage from the immobilized gels. Immobilized T. curvata cells were repeatedly used for the asymmetric reduction of 4-oxoisophorone, more than 15 times, with an extent of conversion of 50%.  相似文献   
3.
Libraries of cosmid and plasmid clones covering the entire region of mtDNA from the liverwortMarchantia polymorpha were constructed. These clones were used for the determination of the complete nucleotide sequence of the liverwort mtDNA totally 186,608 bp (GenBank no. M68929) and including genes for 3 species of ribosomal RNAs, 29 genes for 27 species of transfer RNAs, and 30 genes for functionally known proteins (16 ribosomal proteins, 3 subunits of cytochromec oxidase, apocytochromeb protein, 3 subunits of H+-ATPase, and 7 subunits of NADH ubiquinone oxidoreductase). The genome also contains 32 unidentified open reading frames. Thus the complete nucleotide sequences from both chloroplast and mitochondrial genomes have been determined in the same organism. Plasmid clones are available upon the request. Gene names are represented according to Lonsdale and Leaver (1988) with modifications recommended by Lonsdale (personal communication).  相似文献   
4.
We have used an interspecific backcross between C57BL/6J and Mus spretus to derive a molecular genetic linkage map of chromosome 15 that includes 25 molecular markers and spans 93% of the estimated length of chromosome 15. Using a second interspecific backcross that was analyzed with a centromere-specific marker, we were also able to position our map with respect to the chromosome 15 centromere. This map provides molecular access to many discrete regions on chromosome 15, thus providing a framework for establishing relationships between cloned DNA markers and known mouse mutations and for identifying homologous genes in mice and humans that may be involved in disease.  相似文献   
5.
An interspecific backcross between C57BL/6J and Mus spretus was used to generate a molecular genetic linkage map of mouse chromosome 18 that includes 23 molecular markers and spans approximately 86% of the estimated length of the chromosome. The Apc, Camk2a, D18Fcr1, D18Fcr2, D18Leh1, D18Leh2, Dcc, Emb-rs3, Fgfa, Fim-2/Csfmr, Gnal, Grl-1, Grp, Hk-1rs1, Ii, Kns, Lmnb, Mbp, Mcc, Mtv-38, Palb, Pdgfrb, and Tpl-2 genes were mapped relative to each other in one interspecific backcross. A second interspecific backcross and a centromere-specific DNA satellite probe were used to determine the distance of the most proximal chromosome 18 marker to the centromere. The interspecific map extends the known regions of linkage homology between mouse chromosome 18 and human chromosomes 5 and 18 and identifies a new homology segment with human chromosome 10p. It also provides molecular access to many regions of mouse chromosome 18 for the first time.  相似文献   
6.
A cyprinid fish,Pseudogobio esocinus showed gradual bradycardia at oxygen saturation (%) of less than 29.7±4.6 (1.89±0.29 ml/l of oxygen concentration), surfacing at 14.7±1.3 (0.94±0.09ml/l), drastic decrease of oxygen consumption at less than 14.2±0.8 (0.91 ±0.06ml/l) and asphyxia at 9.7±1.4 (0.62±0.09ml/l). The fish avoided water having low oxygen saturation of less than 54.0± 5.4 (3.38±0.30ml/l), and markedly at less than 26.2±3.4 (1.62±0.16 ml/l).  相似文献   
7.
8.
 Severe combined immune deficiency (scid) mice are assumed to have two types of abnormalities: one is high radiosensitivity and the other is abnormal recombination in immunoglobulin and T-cell receptor genes. The human chromosome 8 q1.1 region has an ability to complement the scid aberrations. Moreover, the localization of the subunit DNA-dependent protein kinase [DNA-PKcs] participating in DNA double-strand break repair in the same locus was clarified. In scid mouse cells, the number of DNA-PKcs products and extent of DNA-PK activity remarkably decrease. These observations gave rise to the assumption that DNA-PKcs is the scid factor itself. In order to determine whether the DNA-PK cs gene is the scid gene, we isolated the mouse DNA-PK cs gene and investigated its chromosomal locus by fluorescence in situ hybridization (FISH). Consequently, it became clear that the mouse DNA-PK cs gene existed in the centromeric region of mouse chromosome 16, determined by cross-genetic study, as a scid locus. This finding strongly suggests that mouse DNA-PK cs is the scid gene. Received: 22 March 1996  相似文献   
9.
To investigate the relationship of oncogene analysis to morphology, we analyzed K-ras gene mutations by dot-blot hybridization with and without consideration of histological atypias in individual colorectal adenomas. Each of 54 colon polyps were divided into two parts after fixation. One part was used as a mass to assess point mutations; the remaining portion of each polyp was paraffin-embedded, stained with hematoxylin and eosin, and examined for point mutations related to histological atypias. In the first part of our study, K-ras gene mutations at codon 12 were detected in 13 cases (24%). In the second part of our study, 12 cases had distinctly different histological atypias. From each of these 12 cases, two areas, one with higher or one with lower grade atypia in the same polyp were excised to analyze for K-ras gene mutation. Two of these 12 cases (17%) had the mutation in different areas of the same tumor. These two cases contained the mutation only in the areas with higher grade atypia, and only one case added information regarding ras mutation upon microdissection when compared to the entire biopsy. These results suggest that oligonucleotide hybridization can identify the majority of cases containing ras mutations despite regional morphologic variation. Individual cases, however, may contain clonal subpopulations within adenomas with different ras sequences from other regions within the same adenoma.  相似文献   
10.
Two β-galaclosidases (β-Galase-I and -II, EC 3.2.1.23) and two α-l -arabinofuranosidases (α-l -Arafase-I and -II. EC 3.2.1.55). were purified from mesophyll tissues of spinach (Spinacia oleracea L.), using chromatography on DEAE-cellulose, lactose-conjugated Sepharose CL-4B, and Sephadex G-100, or on hydroxylapatite and Sephadex G-150. The apparent molecular mass (Mr) of β-Galase-I and -II, respectively, were estimated to be 38 000 and 58 000 on SDS-PAGE and 64 000 and 60 000 on gel-permeation chromatography, indicating that the former was a dimeric protein. The isoelectric points of β-Galase-I and -II were 6.9 and 5.2, respectively. Both enzymes hydrolyzed maximally p-nitrophenyl (PNP) β-galactoside at pH 4.3, and were activated about 2-fold in the presence of BSA (100 μg ml?1). The activity of both enzymes was inhibited strongly by heavy metal ions and p-chloromercuriberszoate (p-CMB). d -Galactono-(1→4)-lactone and d -galactal served as potent competitive inhibitors for the enzymes. β-Galase-I and -II could be distinguished from each other in their relative rates and kinetic properties in the hydrolysis of aryl β-galactosides as well as of lactose and galacto-oligosaccharides. In particular. β-Galase-I exhibited a preferential exowise cleavage of β-1,6-galactotriose and β-1.3-galactan. α-l -Arafase-l (Mr 118000) and -II (M, 68 000) were optimally active on PNP α-l -arabinofuranoside at pH 4.8 and gave Km values of 1.2 and 2.2 mM. respectively. l -Arabino-(1 → 4)-lactone. Ag+, and SDS acted as inhibitors for the isozymes. α-l Arafase-I was characterized by its activity to hydrolyze PNP β-d -xylopyranoside besides PNP α-l -arabinofuranoside. inhibition by d -xylose and d -glucono-(1 → 5)-lactone. and less sensitivity to Hg2+. Cu2+, and p-CMB. Sugar beet arabinan was hydrolyzed rapidly by α-l Arafase-II at one-half the rate for PNP α-l arabinofuranoside, while the polysaccharide was less susceptible to α-l Arafase-I. A spinach leaf arabinogalactan-protein was practically resistant to the action of β-Galases, but its susceptibility to the enzymes increased remarkably after prior hydrolysis with α-l Arafase-Il.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号