首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2022年   1篇
  2016年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
排序方式: 共有17条查询结果,搜索用时 875 毫秒
1.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily of multifunctional ligands that transduce their signals through type I and II serine/threonine kinase receptors and intracellular Smad proteins. Recently, we identified the glycosylphosphatidylinositol-anchored repulsive guidance molecules RGMa, DRAGON (RGMb), and hemojuvelin (RGMc) as coreceptors for BMP signaling (Babbit, J. L., Huang, F. W., Wrighting, D. W., Xia, Y., Sidis, Y., Samad, T. A., Campagna, J. A., Chung, R., Schneyer, A., Woolf, C. J., Andrews, N. C., and Lin, H. Y. (2006) Nat. Genet. 38, 531-539; Babbit, J. L., Zhang, Y., Samad, T. A., Xia, Y., Tang, J., Schneyer, A., Woolf, C. J., and Lin, H. Y. (2005) J. Biol. Chem. 280, 29820-29827; Samad, T. A., Rebbapragada, A., Bell, E., Zhang, Y., Sidis, Y., Jeong, S. J., Campagna, J. A., Perusini, S., Fabrizio, D. A., Schneyer, A. L., Lin, H. Y., Brivanlou, A. H., Attisano, L., and Woolf, C. J. (2005) J. Biol. Chem. 280, 14122-14129). However, the mechanism by which RGM family members enhance BMP signaling remains unknown. Here, we report that RGMa bound to radiolabeled BMP2 and BMP4 with Kd values of 2.4+/-0.2 and 1.4+/-0.1 nm, respectively. In KGN human ovarian granulosa cells and mouse pulmonary artery smooth muscle cells, BMP2 and BMP4 signaling required BMP receptor type II (BMPRII), but not activin receptor type IIA (ActRIIA) or ActRIIB, based on changes in BMP signaling by small interfering RNA inhibition of receptor expression. In contrast, cells transfected with RGMa utilized both BMPRII and ActRIIA for BMP2 or BMP4 signaling. Furthermore, in BmpRII-null pulmonary artery smooth muscle cells, BMP2 and BMP4 signaling was reduced by inhibition of endogenous RGMa expression, and RGMa-mediated BMP signaling required ActRIIA expression. These findings suggest that RGMa facilitates the use of ActRIIA by endogenous BMP2 and BMP4 ligands that otherwise prefer signaling via BMPRII and that increased utilization of ActRIIA leads to generation of an enhanced BMP signal.  相似文献   
2.
Activins and inhibins compose a heterogeneous subfamily within the transforming growth factor-beta (TGF-beta) superfamily of growth and differentiation factors with critical biological activities in embryos and adults. They signal through a heteromeric complex of type II, type I, and for inhibin, type III receptors. To characterize the affinity, specificity, and activity of these receptors (alone and in combination) for the inhibin/activin subfamily, we developed a cell-free assay system using soluble receptor-Fc fusion proteins. The soluble activin type II receptor (sActRII)-Fc fusion protein had a 7-fold higher affinity for activin A compared with sActRIIB-Fc, whereas both receptors had a marked preference for activin A over activin B. Although inhibin A and B binding was 20-fold lower compared with activin binding to either type II receptor alone, the mixture of either type II receptor with soluble TGF-beta type III receptor (TbetaRIII; betaglycan)-Fc reconstituted a soluble high affinity inhibin receptor. In contrast, mixing either soluble activin type II receptor with soluble activin type I receptors did not substantially enhance activin binding. Our results support a cooperative model of binding for the inhibin receptor (ActRII.sTbetaRIII complex) but not for activin receptors (type II + type I) and demonstrate that a complex composed of activin type II receptors and TbetaRIII is both necessary and sufficient for high affinity inhibin binding. This study also illustrates the utility of this cell-free system for investigating hypotheses of receptor complex mechanisms resulting from crystal structure analyses.  相似文献   
3.
It has been recently established that Klotho coreceptors associate with fibroblast growth factor (FGF) receptor tyrosine kinases (FGFRs) to enable signaling by endocrine-acting FGFs. However, the molecular interactions leading to FGF-FGFR-Klotho ternary complex formation remain incompletely understood. Here, we show that in contrast to αKlotho, βKlotho binds its cognate endocrine FGF ligand (FGF19 or FGF21) and FGFR independently through two distinct binding sites. FGF19 and FGF21 use their respective C-terminal tails to bind to a common binding site on βKlotho. Importantly, we also show that Klotho coreceptors engage a conserved hydrophobic groove in the immunoglobulin-like domain III (D3) of the "c" splice isoform of FGFR. Intriguingly, this hydrophobic groove is also used by ligands of the paracrine-acting FGF8 subfamily for receptor binding. Based on this binding site overlap, we conclude that while Klotho coreceptors enhance binding affinity of FGFR for endocrine FGFs, they actively suppress binding of FGF8 subfamily ligands to FGFR.  相似文献   
4.
TGF-β family ligands are involved in a variety of critical physiological processes. For instance, the TGF-β ligand myostatin is a staunch negative regulator of muscle growth and a therapeutic target for muscle-wasting disorders. Therefore, it is important to understand the molecular mechanisms of TGF-β family regulation. One form of regulation is through inhibition by extracellular antagonists such as the follistatin (Fst)-type proteins. Myostatin is tightly controlled by Fst-like 3 (Fstl3), which is the only Fst-type molecule that has been identified in the serum bound to myostatin. Here, we present the crystal structure of myostatin in complex with Fstl3. The structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand. This results in conformational differences in the ND of Fstl3 that alter its position in the type I receptor-binding site of the ligand. We also show that single point mutations in the ND of Fstl3 are detrimental to ligand binding, whereas corresponding mutations in Fst have little effect. Overall, we have shown that the NDs of Fst-type molecules exhibit distinctive modes of ligand binding, which may affect overall affinity of ligand·Fst-type protein complexes.  相似文献   
5.
Activin has numerous biological activities including regulation of follicular development, spermatogenesis, and steroidogenesis within the gonads. Activities of activin are regulated by follistatin (FST), an activin binding protein, and perhaps follistatin-like 3 (FSTL3; also known as FLRG and FSRP). FSTL3 is a recently described member of the FST family having an overall structure and activity profile similar to that of FST, including binding and neutralization of activin. FSTL3 is most highly expressed in the placenta and testis, whereas FST is highest in the ovary and kidney, suggesting that FSTL3 has biological actions that do not entirely overlap those of FST. To investigate the role of local FSTL3 as a potential regulator of activin action in gonad development and function, we examined FSTL3 expression in the mouse testis. FSTL3 protein was localized to Leydig cells, spermatagonia, and mature spermatids in normal male mice. We then created transgenic mice using a human FSTL3 cDNA driven by the mouse alpha-inhibin promoter. Three of five transgenic founders were fertile and were bred to establish lines. In the highest expressing line 3, transgene expression was largely restricted to gonads, with pituitary, adrenal, brain, and uterine expression being substantially lower. Gonad weights, sperm counts, and fertility were significantly reduced in transgenic males, and reduced litter size was evident in line 3 females. Within the testis, highest transgene expression was observed in Sertoli cells, and although most tubules showed evidence of normal spermatogenic development, degenerating tubules devoid of germ cells and Leydig cell hyperplasia were also evident in every line 3 animal examined. Ovaries from line 3 females contained fewer antral follicles and more apparent follicular atresia. Although circulating human FSTL3 levels were undetectable, FSH and LH levels in adult transgenic mice were not significantly different from wild-type animals. However, testosterone levels were significantly increased at d 21 and significantly reduced at d 60 compared with wild-type males. These results suggest that FSTL3 is likely to be a local regulator of activin action in gonadal development and gametogenesis and, further, that activin appears to have important actions in gonadal development and function that are critical for normal reproduction.  相似文献   
6.
DRAGON, a bone morphogenetic protein co-receptor   总被引:5,自引:0,他引:5  
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)beta superfamily of ligands that regulate many crucial aspects of embryonic development and organogenesis. Unlike other TGFbeta ligands, co-receptors for BMP ligands have not been described. Here we show that DRAGON, a glycosylphosphatidylinositol-anchored member of the repulsive guidance molecule family, which is expressed early in the developing nervous system, enhances BMP but not TGFbeta signaling. DRAGON binds directly to BMP2 and BMP4 but not to BMP7 or other TGFbeta ligands. The enhancing action of DRAGON on BMP signaling is also reduced by administration of Noggin, a soluble BMP antagonist, indicating that the action of DRAGON is ligand-dependent. DRAGON associates directly with BMP type I (ALK2, ALK3, and ALK6) and type II (ActRII and ActRIIB) receptors, and its signaling is reduced by dominant negative Smad1 and ALK3 or -6 receptors. In the Xenopus embryo, DRAGON both reduces the threshold of the ability of Smad1 to induce mesodermal and endodermal markers and alters neuronal and neural crest patterning. The direct interaction of DRAGON with BMP ligands and receptors indicates that it is a BMP co-receptor that potentiates BMP signaling.  相似文献   
7.

Purpose

To present a novel method for quantitative assessment of retinal vessel permeability using a fluorescein angiography-based computer algorithm.

Methods

Twenty-one subjects (13 with diabetic retinopathy, 8 healthy volunteers) underwent fluorescein angiography (FA). Image pre-processing included removal of non-retinal and noisy images and registration to achieve spatial and temporal pixel-based analysis. Permeability was assessed for each pixel by computing intensity kinetics normalized to arterial values. A linear curve was fitted and the slope value was assigned, color-coded and displayed. The initial FA studies and the computed permeability maps were interpreted in a masked and randomized manner by three experienced ophthalmologists for statistical validation of diagnosis accuracy and efficacy.

Results

Permeability maps were successfully generated for all subjects. For healthy volunteers permeability values showed a normal distribution with a comparable range between subjects. Based on the mean cumulative histogram for the healthy population a threshold (99.5%) for pathological permeability was determined. Clear differences were found between patients and healthy subjects in the number and spatial distribution of pixels with pathological vascular leakage. The computed maps improved the discrimination between patients and healthy subjects, achieved sensitivity and specificity of 0.974 and 0.833 respectively, and significantly improved the consensus among raters for the localization of pathological regions.

Conclusion

The new algorithm allows quantification of retinal vessel permeability and provides objective, more sensitive and accurate evaluation than the present subjective clinical diagnosis. Future studies with a larger patients’ cohort and different retinal pathologies are awaited to further validate this new approach and its role in diagnosis and treatment follow-up. Successful evaluation of vasculature permeability may be used for the early diagnosis of brain microvascular pathology and potentially predict associated neurological sequelae. Finally, the algorithm could be implemented for intraoperative evaluation of micovascular integrity in other organs or during animal experiments.  相似文献   
8.
Transforming growth factor beta family ligands are neutralized by a number of structurally divergent antagonists. Follistatin-type antagonists, which include splice variants of follistatin (FS288 and FS315) and follistatin-like 3 (FSTL3), have high affinity for activin A but differ in their affinity for other ligands, particularly bone morphogenetic proteins. To understand the structural basis for ligand specificity within FS-type antagonists, we determined the x-ray structure of activin A in complex with FSTL3 to a resolution of 2.5 A. Similar to the previously resolved FS.activin A structures, the ligand is encircled by two antagonist molecules blocking all ligand receptor-binding sites. Recently, the significance of the FS N-terminal domain interaction at the ligand type I receptor site has been questioned; however, our data show that for FSTL3, the N-terminal domain forms a more intimate contact with activin A, implying that this interaction is stronger than that for FS. Furthermore, binding studies revealed that replacing the FSTL3 N-terminal domain with the corresponding FS domain considerably lowers activin A affinity. Therefore, both structural and biochemical evidence support a significant interaction of the N-terminal domain of FSTL3 with activin A. In addition, structural comparisons with bone morphogenetic proteins suggest that the interface where the N-terminal domain binds may be the key site for determining FS-type antagonist specificity.  相似文献   
9.
It has been 70 years since the name inhibin was used to describe a gonadal factor that negatively regulated pituitary hormone secretion. The majority of this period was required to achieve purification and definitive characterization of inhibin, an event closely followed by identification and characterization of activin and follistatin (FS). In contrast, the last 15-20 years saw a virtual explosion of information regarding the biochemistry, physiology, and biosynthesis of these proteins, as well as identification of activin receptors, and a unique mechanism for FS action-the nearly irreversible binding and neutralization of activin. Many of these discoveries have been previously summarized; therefore, this review will cover the period from the mid 1990s to present, with particular emphasis on emerging themes and recent advances. As the field has matured, recent efforts have focused more on human studies, so the endocrinology of inhibin, activin, and FS in the human is summarized first. Another area receiving significant recent attention is local actions of activin and its regulation by both FS and inhibin. Because activin and FS are produced in many tissues, we chose to focus on a few particular examples with the most extensive experimental support, the pituitary and the developing follicle, although nonreproductive actions of activin and FS are also discussed. At the cellular level, it now seems that activin acts largely as an autocrine and/or paracrine growth factor, similar to other members of the transforming growh factor beta superfamily. As we discuss in the next section, its actions are regulated extracellularly by both inhibin and FS. In the final section, intracellular mediators and modulators of activin signaling are reviewed in detail. Many of these are shared with other transforming growh factor beta superfamily members as well as unrelated molecules, and in a number of cases, their physiological relevance to activin signal propagation remains to be elucidated. Nevertheless, taken together, recent findings suggest that it may be more appropriate to consider a new paradigm for inhibin, activin, and FS in which activin signaling is regulated extracellularly by both inhibin and FS whereas a number of intracellular proteins act to modulate cellular responses to these activin signals. It is therefore the balance between activin and all of its modulators, rather than the actions of any one component, that determines the final biological outcome. As technology and model systems become more sophisticated in the next few years, it should become possible to test this concept directly to more clearly define the role of activin, inhibin, and FS in reproductive physiology.  相似文献   
10.
Transforming growth factor-β superfamily ligands, including activin and myostatin, modulate body composition, islet function, and glucose homeostasis. Their bioactivity is controlled by the antagonists follistatin (FST) and FST like-3 (FSTL3). The hypothesis tested was that FST and FSTL3 have distinct roles in regulating body composition, glucose homeostasis, and islet function through regulation of activin and myostatin bioactivity. Three genetic mutant mouse lines were created. FSTL3 knockout (FSTL3 KO), a mouse line producing only the FST288 isoform (FST288-only) and a double mutant (2xM) in which the lines were crossed. FST288-only males were lighter that wild-type (WT) littermates while FSTL3 KO and 2xM males had reduced perigonadal fat pad weights. However, only 2xM mice had increased whole body fat mass and decreased lean mass by quantitative nuclear magnetic resonance (qNMR). Fasting glucose levels in FSTL3 WT and KO mice were lower than FST mice in younger animals but were higher in older mice. Serum insulin and pancreatic insulin content in 2xM mice was significantly elevated over other genotypes. Nevertheless, 2xM mice were relatively insulin resistant and glucose intolerant compared to FST288-only and WT mice. Fractional islet area and proportion of β-cells/islet were increased in FSTL3 KO and 2xM, but not FST288-only mice. Despite their larger size, islets from FSTL3 KO and 2xM mice were not functionally enhanced compared to WT mice. These results demonstrate that body composition and glucose homeostasis are differentially regulated by FST and FSTL3 and that their combined loss is associated with increased fat mass and insulin resistance despite elevated insulin production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号