首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   4篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1986年   3篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有63条查询结果,搜索用时 31 毫秒
1.
2.
Isolation of the pulmonary veins may be an effective treatment modality for eliminating atrial fibrillation (AF) episodes but unfortunately not for all patients. When ablative therapy fails, it is assumed that AF has progressed from a trigger-driven to a substrate-mediated arrhythmia. The effect of radiofrequency ablation on persistent AF can be attributed to various mechanisms, including elimination of the trigger, modification of the arrhythmogenic substrate, interruption of crucial pathways of conduction, atrial debulking, or atrial denervation. This review discusses the possible effects of pulmonary vein isolation on the fibrillatory process and the necessity of cardiac mapping in order to comprehend the mechanisms of AF in the individual patient and to select the optimal treatment modality.  相似文献   
3.

Background

Protein translocation across the membrane of the Endoplasmic Reticulum (ER) is the first step in the biogenesis of secretory and membrane proteins. Proteins enter the ER by the Sec61 translocon, a proteinaceous channel composed of three subunits, α, β and γ. While it is known that Sec61α forms the actual channel, the function of the other two subunits remains to be characterized.

Results

In the present study we have investigated the function of Sec61β in Drosophila melanogaster. We describe its role in the plasma membrane traffic of Gurken, the ligand for the Epidermal Growth Factor (EGF) receptor in the oocyte. Germline clones of the mutant allele of Sec61β show normal translocation of Gurken into the ER and transport to the Golgi complex, but further traffic to the plasma membrane is impeded. The defect in plasma membrane traffic due to absence of Sec61β is specific for Gurken and is not due to a general trafficking defect.

Conclusion

Based on our study we conclude that Sec61β, which is part of the ER protein translocation channel affects a post-ER step during Gurken trafficking to the plasma membrane. We propose an additional role of Sec61β beyond protein translocation into the ER.  相似文献   
4.
Botulinum neurotoxin B (BoNT-B) mediates proteolytic cleavage of VAMP I/II (synaptobrevins I/II), which prevents vesicle-membrane fusion and blocks neurotransmitter release. In the present study, we investigated the effects of BoNT-B on neurotransmitter release in vivo from spinal primary afferent sensory fibers and the effects of this blockade on nociception. With intrathecally (IT) delivered BoNT-B in C57B/l6 mice, we characterized the effects of such block on the release of substance P (SP) from spinal afferent nociceptors (as measured by neurokinin-1 receptor, NK1-R, internalization), spinal neuronal activation (as indicated by spinal C-Fos expression) and nociceptive behavior after intraplantar (IPLT) formalin. In addition, we investigated the effect of IT BoNT-B on spinal nerve ligation-induced tactile allodynia. A single percutaneous IT injection of BoNT-B 0.5 U at 2 or 5 days prior to IPLT formalin reduced NK1-R internalization and C-Fos expression. These effects correlated with BoNT-B cleavage of VAMPI/II protein in tissue lysate. IT BoNT-B also produced a corresponding reduction in phase 2 of formalin-evoked flinching behavior for over 30 days after IT injection. In mice with spinal nerve ligation (SNL), tactile allodynia was observed, which was attenuated by IT BoNT-B 0.5 U over the next 15 days, as compared to vehicle animals. These effects were observed without effects upon motor function. The specificity of the IT BoNT-B effect is indicated by: i) IT co-injection of BoNT-B and anti-BoNTB antibody prevented effects on SP release, and ii) IT BoNT-B 50 U in the Sprague Dawley rats showed no effect on formalin-evoked flinching or SNL-induced tactile allodynia, which is consistent with rat resistance to BoNT-B. IT BoNT-B blocks transmitter release from spinal primary afferents, and attenuates inflammatory nociceptive response and spinal nerve injury-induced neuropathic pain, in the absence of motor impairment. These observations provide an initial assessment of the ability of IT BoNT-B to regulate spinal nociceptive processing.  相似文献   
5.
Abstract: Catecholamines and their metabolites have been proposed as markers of sympathetic nervous system stimulation. However, the adrenal medulla is a rich source of catecholamines and catecholamine metabolites and may play a significant role in plasma levels of these compounds. In addition to adrenal catecholamine metabolite efflux, the role of the catecholamine precursor 3,4-dihydroxyphenylalanine (DOPA) has not been fully evaluated. The simultaneous effluxes of catecholamines, metabolites, DOPA, and neuropeptides were measured in perfusates from isolated dog adrenals. The relative abundance of compounds detected consistently during unstimulated conditions was epinephrine ≫ norepinephrine > 3,4-dihydroxyphenylglycol > metanephrine > normetanephrine > dopamine > 3,4-dihydroxyphenylacetic acid > 3-methoxy-4-hydroxyphenylglycol ≥ DOPA ≫ [Met]enkephalin ≫ neuropeptide Y. Effluxes of analytes were not affected by cocaine and the ratios of catecholamines to metabolites increased dramatically with carbachol stimulation, consistent with negligible reuptake into adrenal cells. Thus, most of the 3,4-dihydroxyphenylglycol is expected to be derived from epinephrine and norepinephrine subsequent to translocation from chromaffin vesicles into the cytosol. The efflux of DOPA increased dramatically during stimulation with 30 µ M carbachol in a calcium-dependent manner. Efflux of DOPA during the initial stabilization period of the perfusion preparation declined exponentially, in parallel with the effluxes of the catecholamines and neuropeptides but not with metabolites. Evoked release of DOPA was Ca2+-dependent. These data suggest that DOPA can be stored and released exocytotically from chromaffin granules.  相似文献   
6.
We investigated the ability of N6-cyclohexyladenosine (CHA), a potent and selective agonist of the adenosine A1 receptor, to attenuate elevations of levels of extracellular hippocampal glutamate and glycine that result from episodes of transient global cerebral ischemia (TGCI). A total of 30 New Zealand white rabbits were randomly assigned to receive 0 (n = 5), 0.1 (n = 8), 1.0 (n = 6), 10 (n = 6), or 100 (n = 5) microM CHA. The drug was dissolved in artificial CSF (vehicle) and administered via a microdialysis probe placed stereotactically into the dorsal hippocampus. A second microdialysis probe placed into the contralateral hippocampus of each animal was perfused with vehicle alone. Ten minutes of TGCI was induced by neck tourniquet inflation and deliberate hypotension from 0 to 10 min. Microdialysis samples were collected as follows: every 20 min preischemia (at -80, -60, -40, -20, and 0 min); every 5 min during ischemia and in the immediate reperfusion period (at 5, 10, 15, and 20 min); and every 20 min for the remainder of the reperfusion period (at 40, 60, and 80 min). Samples were then analyzed for their concentration of glutamate and glycine by HPLC. Following 10 min of ischemia, glutamate levels increased to a peak of 3.28 +/- 0.55 times baseline and returned to preischemic levels by 40 min, i.e., during reperfusion. Glycine concentrations increased to 5.41 +/- 0.91 times over baseline and remained elevated for the duration of the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
Rats chronically implanted with intrathecal catheters displayed a dose-dependent increase in the hot-plate and tail-flick response latencies following the injection of human beta-endorphin into the lumbar spinal subarachnoid space through the indwelling catheter. beta-Endorphin was approximately 25 times more potent than morphine on a molar basis. Matching morphine and beta-endorphin doses such that approximately equal submaximal submaximal effects occurred, it was observed that the antinociception produced by beta-endorphin lasted approximately three times longer than that produced by morphine. Experiments with intrathecal injection of beta-endorphin into the spinal subarachnoid space of cats fitted with intrathecal catheters also revealed a potent antinociceptive effect which was completely antagonized by naloxone. In the rats, naloxone administered systemically in doses of 10--100 microgram/kg produced a parallel shift in the dose-response curves of both nociceptive measures suggesting a competitive antagonism. Using a dose ratio analysis, an in vivo pA2 of 7.1 for naloxone was obtained. These data and those derived from previous work based on the pA2 suggest that the interaction of morphine, certain pentapeptides, and beta-endorphin is the same with regard to the spinal opiate receptor population mediating behaviorally defined analgesia.  相似文献   
8.
1. In the present study, we characterize the time course of spinal FOS protein expression after transient noninjurious (6-min) or injurious (12-min) spinal ischemia induced by inflation of a balloon catheter placed into the descending thoracic aorta. In addition, this work examined the effects of spinal hypothermia on FOS expression induced either by ischemia or by potassium-evoked depolarization (intrathecal KCl).2. Short-lasting (6-min) spinal ischemia evoked a transient FOS protein expression. The peak expression was seen 2 hr after reperfusion in all laminar levels in lumbosacral segments. At 4 hr of reperfusion, more selective FOS expression in spinal interneurons localized in the central part of laminae V–VII was seen. At 24 hr no significant increase in FOS protein was detected.3. After 12 min of ischemia and 2 hr of reflow, nonspecific FOS expression was seen in both white and gray matter, predominantly in nonneuronal elements. Intrathecal KCl-induced FOS expression in spinal neurons in the dorsal horn and in the intermediate zone. Spinal hypothermia (27°C) significantly suppressed FOS expression after 6 or 12 min of ischemia but not after KCl-evoked depolarization.4. Data from the present study show that an injurious (but not noninjurious) interval of spinal ischemia evokes spinal FOS protein expression in glial cells 2 hr after reflow. The lack of neuronal FOS expression corresponds with extensive neuronal degeneration seen in this region 24 hr after reflow. Noninjurious (6-min) ischemia induced a transient, but typically neuronal FOS expression. The significant blocking effect of hypothermia (27°C) on the FOS induction after ischemia but not after potassium-evoked depolarization also suggests that simple neuronal depolarization is a key trigger in FOS induction.  相似文献   
9.
Capsaicin has been shown to evoke the release of substance P (SP) from small diameter primary afferent fibers. Using an in vivo perfusion of the rat spinal cord, this study examined the pharmacology of opioid receptor systems which modulate the capsaicin-evoked release of SP. The addition of capsaicin (200 μM) to the perfusate raised SP-like immunoreactivity (SP-LI) from resting levels of 31±5 to 74±14 pg/ml or an increase of 139% above the baseline. Using high pressure liquid chromatography (HPLC) the identity of the released SP-LI was determined to coelute primarily with authentic SP or the oxidized form of SP. Opioid receptor agonists were added to the perfusate and their ability to inhibit capsaicin-evoked release of SP-LI was assessed. Morphine (10–100 μM), DAGO (1–100 μM), DPLPE (10–100 μM), but not U50488H (100 μM) produced a dose-dependent reduction in the capsaicin-evoked release of SP-LI. Pretreatment with the opioid receptor antagonist naloxone (1 mg/kg, IP) had no effect on the basal or capsaicin-evoked release of SP-LI. Naloxone pretreatment was able to antagonize completely the opioid-produced inhibition of capsaicin-evoked SP-LI release. These data indicate that the release of SP from primary afferent fibers can be modulated by the activation of mu or delta but not kappa opioid receptors. Further, these data support the hypothesis that spinally administered mu and delta opioid agonists may produce their antinociceptive effect through the presynaptic inhibition of neuropeptide release from small diameter primary afferent fibers.  相似文献   
10.
—By assay of acetylcholine hydrolysis to measure total cholinesterase activity and acetyl-β-methylcholine hydrolysis to measure acetylcholinesterase (E.C 3.1.1.7) activity, patterns of regeneration of enzyme activity were measured in seven areas of brain, cerebrospinal fluid and plasma of cats after administration of an irreversible inhibitor. Halftimes of recovery of total cholinesterase in the brain tissues ranged from 0·9 to 3·8 days (av = 2·5 days) and acetylcholinesterase recovery halftimes ranged from 1·2 to 5·3 days (av = 3·6 days). Regeneration of total cholinesterase was also followed in subcellular fractions of guinea-pig and rat brains after similar inhibition. In both species, the fastest recovery occurred in the soluble fraction with halftimes of 1·8 and 1·6 days, while the synaptosomal fractions exhibited the slowest recoveries with halftimes of 8·3 and 4·1 days. Regeneration of activity in plasma and CSF most nearly resembled that of the soluble brain fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号