首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   6篇
  国内免费   6篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2008年   8篇
  2007年   6篇
  2006年   11篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1986年   2篇
排序方式: 共有104条查询结果,搜索用时 46 毫秒
1.
Malaria infections display variation patterns of clinical course and outcome. Although CD4+CD25+Foxp3+ regulatory T (Treg) cells play an essential role in immune homeostasis, the immune regulatory roles involved in malaria infection remains to be elucidated. Herein, we compared the disparity in Treg cells response during the course of blood stage Plasmodium chabaudi chabaudi AS (P. c chabaudi AS) infection in DBA/2 and BALB/c mice. BALB/c mice initiated a Th1/Th2 profile respond to P. c chabaudi AS infection, but DBA/2 mice failed to control P. c chabaudi AS infection and almost of them died post-peak parasitemia. At the peak parasitemia, we found that higher proportion of Treg cells with elevated Foxp3 expression in DBA/2 than in BALB/c mice. We used anti-CD25 mAb to deplete Treg cells and found that the survival time and rate were prolonged in DBA/2 mice treated with anti-CD25 mAb. Treatment with anti-CD25 mAb in vivo led to enhanced pro-inflammation responses and Foxp3 expression decline on Treg cells. In contrast, after DBA/2 was treatment with anti-IL-10R mAb, IL-10R blockade in vivo caused excessive pro-inflammation responses and Foxp3 expression loss on CD4+CD25+ T cells. Earlier death was found in all of DBA/2 mice with anti-IL-10R mAb. It suggested that IL-2 and IL-10 signal involved in maintaining Foxp3 expression on Treg cells. In all, the moderate suppressive activity of Treg cells may facilitate resistance to P. c chabaudi AS infection.  相似文献   
2.
3.
Lipman RS  Chen J  Evilia C  Vitseva O  Hou YM 《Biochemistry》2003,42(24):7487-7496
Aminoacyl-tRNA synthetases are essential enzymes that catalyze attachment of amino acids to tRNAs for decoding of genetic information. In higher eukaryotes, several synthetases associate with non-synthetase proteins to form a high-molecular mass complex that may improve the efficiency of protein synthesis. This multi-synthetase complex is not found in bacteria. Here we describe the isolation of a non-synthetase protein from the archaeon Methanocaldococcus jannaschii that was copurified with prolyl-tRNA synthetase (ProRS). This protein, Mj1338, also interacts with several other tRNA synthetases and has an affinity for general tRNA, suggesting the possibility of forming a multi-synthetase complex. However, unlike the non-synthetase proteins in the eukaryotic complex, the protein Mj1338 is predicted to be a metabolic protein, related to members of the family of H(2)-forming N(5),N(10)-methylene tetrahydromethanopterin (5,10-CH(2)-H(4)MP) dehydrogenases that are involved in the one-carbon metabolism of the archaeon. The association of Mj1338 with ProRS, and with other components of the protein synthesis machinery, thus suggests the possibility of a closer link between metabolism and decoding in archaea than in eukarya or bacteria.  相似文献   
4.
The extreme halophile Halobacterium species NRC-1 overcomes external near-saturating salt concentrations by accumulating intracellular salts comparable to those of the medium. This raises the fundamental question of how halophiles can maintain the specificity of protein-nucleic acid interactions that are particularly sensitive to high salts in mesophiles. Here we address the specificity of the essential aminoacylation reaction of the halophile, by focusing on molecular recognition of tRNA(Cys) by the cognate cysteinyl-tRNA synthetase. Despite the high salt environments of the aminoacylation reaction, and despite an unusual structure of the tRNA with an exceptionally large dihydrouridine loop, we show that aminoacylation of the tRNA proceeds with a catalytic efficiency similar to that of its mesophilic counterparts. This is manifested by an essentially identical K(m) for tRNA to those of the mesophiles, and by recognition of the same nucleotide determinants that are conserved in evolution. Interestingly, aminoacylation of the halophile tRNA(Cys) is more closely related to that of bacteria than eukarya by placing a strong emphasis on features of the tRNA tertiary core. This suggests an adaptation to the highly negatively charged tRNA sugar-phosphate backbone groups that are the key elements of the tertiary core.  相似文献   
5.
Methylation of tRNA on the four canonical bases adds structural complexity to the molecule, and improves decoding specificity and efficiency. While many tRNA methylases are known, detailed insight into the catalytic mechanism is only available in a few cases. Of interest among all tRNA methylases is the structural basis for nucleotide selection, by which the specificity is limited to a single site, or broadened to multiple sites. General themes in catalysis include the basis for rate acceleration at highly diverse nucleophilic centers for methyl transfer, using S-adenosylmethionine as a cofactor. Studies of tRNA methylases have also yielded insights into molecular evolution, particularly in the case of enzymes that recognize distinct structures to perform identical reactions at the same target nucleotide.  相似文献   
6.
Chen LP  Ge YM  Zhu XY 《Plant cell reports》2006,25(9):907-913
Interspecific chimeras between tuber mustard and red cabbage were obtained by in vitro graft-culture method. Before grafting, 6-day-old seedlings of tuber mustard and red cabbage were vertically half-cut and treated with different concentrations of 6-BA and NAA for 1 min, then, they were symmetrically fit together. As a result, sectorial chimeras were initially produced from the united shoot tips. The maximum frequency of chimeral bud formation reached 6.33% when the vertical sections of tuber mustard and cabbage were treated with 2 mg/l 6-BA and 1 mg/l NAA. When sectorial chimeras were propagated on MS medium containing 1 mg/l 6-BA, periclinal and mericlinal chimeras gradually developed. Chimeral shoots were rooted on half-strength MS medium containing 0.1 mg/l NAA. The rooted chimeras were acclimatized and transferred to the field for cytological and morphological analysis. The results showed that stomata density in the chimeras was significantly higher than that of their parents, while chloroplast size, starch grain size and number were intermediate between the two parents. The chimeras were further analyzed by flow cytometry, and the results indicated that they contained both sets of parental chromosomes. Moreover, chimeral plants possessed valuable characters from the two parents.  相似文献   
7.
通过外源性底物对[γ-32P]-ATP的摄入量来测定豆蔻酰佛波醇乙酯(phorbol-myristate-acetate,PMA)处理后的人脐静脉内皮细胞(humanumbilicalveinendothelialcells,HUVECs)膜蛋白激酶C(proteinkinaseC,PKC)的活性;利用间接免疫荧光标记和Western印迹方法分析蛋白激酶C活性对锚蛋白及CD44的亚细胞分布及蛋白质表达的影响。结果发现HUVECs的锚蛋白及CD44表达水平趋势与PKC活性变化相吻合;PKC活化导致CD44在细胞膜上呈聚集状,而锚蛋白则移位并聚集于CD44处;PKC抑制剂能抑制PKC活化所带来的上述作用。结果表明PKC活化通过磷酸化作用能上调锚蛋白及CD44表达,并同时导致二者发生一致性运动及共分布。  相似文献   
8.
结合建立的酵母转化实验影响指标体系,利用网络层次分析法(ANP)解决了酵母转化实验策略优化的问题.通过对已有成果进行研究总结,结合前期基础实验以及 对该领域专家学者的咨询意见,建立了酵母转化实验影响指标体系,并基于管理学的ANP理论对实验方法进行了两两比较,分析得出电击穿孔为最优酵母转化方法.实验表明,利用脂质体法得到的转化子为31个/μg质粒DNA,利用电击穿孔法在电压为2.0 kV、1.5 kV时得到的转化子分别为37、29个/μg 质粒DNA,说明电击穿孔实验转化率相对较高,且电压的改变对转化率影响较大,与指标体系分析结果相符.故该指标体系与分析方法可为毕赤酵母转化实验策略优化提供有效的理论依据,其思路、体系、理论和方法可为同类实验所借鉴.  相似文献   
9.
The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号