首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2384篇
  免费   150篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   24篇
  2020年   14篇
  2019年   19篇
  2018年   28篇
  2017年   30篇
  2016年   64篇
  2015年   97篇
  2014年   100篇
  2013年   140篇
  2012年   216篇
  2011年   166篇
  2010年   95篇
  2009年   112篇
  2008年   160篇
  2007年   160篇
  2006年   132篇
  2005年   145篇
  2004年   130篇
  2003年   105篇
  2002年   120篇
  2001年   35篇
  2000年   22篇
  1999年   31篇
  1998年   35篇
  1997年   27篇
  1996年   35篇
  1995年   25篇
  1994年   22篇
  1993年   29篇
  1992年   26篇
  1991年   19篇
  1990年   18篇
  1989年   16篇
  1988年   14篇
  1987年   8篇
  1986年   16篇
  1985年   18篇
  1984年   14篇
  1983年   11篇
  1982年   10篇
  1981年   7篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   4篇
  1976年   7篇
  1973年   1篇
  1866年   1篇
排序方式: 共有2535条查询结果,搜索用时 15 毫秒
1.
Fructan: fructan fructosyl transferase (FFT, EC 2.4.1.100) was purified from chicory (Cichorium intybus L. var. foliosum cv. Flash) roots by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, and anion- and cation-exchange chromatography. This protocol produced a 60-fold purification and a specific activity of 14.5 mol·(mg protein) –1·min–1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On sodium dodecyl sulfatepolyacrylamide gel electrophoresis and mass spectrometry, 52-kDa and 17-kDa fragments were found, suggesting that the enzyme was a heterodimer. Optimal activity was found between pH 5.5 and 6.5. The enzyme used 1-kestose, 1,1-nystose, oligofructan and commercial chicory root inulin (degree of polymerization 10) as donors and acceptors. Sucrose was the best acceptor but could not be used as a donor. However, at higher concentrations sucrose acted as a competitive inhibitor for donors of FFT. 1-Kestose was the most efficient and 1,1-nystose the least efficient donor. The purified enzyme exhibited -fructosidase activity, specially at higher temperatures and lower substrate concentrations. The synthesis of fructans from 1-kestose decreased at higher temperatures (5–50°C). Therefore enzyme assays were performed at 0°C. The same fructan oligosaccharides, with a distribution similar to that observed in vivo, were obtained upon incubation of the enzyme with sucrose and commercial chicory root inulin.Abbreviations Con A concanavalin A - DP degree of polymerization - FFT fructan: fructan fructosyl transferase - Fru fructose - Glc glucose - Kes 1-kestose - MALDI-TOF MS matrix-assisted laser desorption ionisation time of flight mass spectrometry - Nys 1,1-nystose - pI isoelectric point - SST sucrose: sucrose fructosyl transferase - Suc sucrose The authors would like to thank E. Nackaerts for valuable assistance. W. Van den Ende is also grateful to the National Fund for Scientific Research (NFSR Belgium) for giving a grant for research assistants. P. Verhaert is a research associate of the NFSR. This work was also supported by grant OT/91/18 from the Research Fund K.U. Leuven.  相似文献   
2.
3.
4.
Soil faunal activity can be a major control of greenhouse gas (GHG) emissions from soil. Effects of single faunal species, genera or families have been investigated, but it is unknown how soil fauna diversity may influence emissions of both carbon dioxide (CO2, end product of decomposition of organic matter) and nitrous oxide (N2O, an intermediate product of N transformation processes, in particular denitrification). Here, we studied how CO2 and N2O emissions are affected by species and species mixtures of up to eight species of detritivorous/fungivorous soil fauna from four different taxonomic groups (earthworms, potworms, mites, springtails) using a microcosm set‐up. We found that higher species richness and increased functional dissimilarity of species mixtures led to increased faunal‐induced CO2 emission (up to 10%), but decreased N2O emission (up to 62%). Large ecosystem engineers such as earthworms were key drivers of both CO2 and N2O emissions. Interestingly, increased biodiversity of other soil fauna in the presence of earthworms decreased faunal‐induced N2O emission despite enhanced C cycling. We conclude that higher soil fauna functional diversity enhanced the intensity of belowground processes, leading to more complete litter decomposition and increased CO2 emission, but concurrently also resulting in more complete denitrification and reduced N2O emission. Our results suggest that increased soil fauna species diversity has the potential to mitigate emissions of N2O from soil ecosystems. Given the loss of soil biodiversity in managed soils, our findings call for adoption of management practices that enhance soil biodiversity and stimulate a functionally diverse faunal community to reduce N2O emissions from managed soils.  相似文献   
5.
BackgroundPrevious studies have suggested the existence of enteropathy in cystic fibrosis (CF), which may contribute to intestinal function impairment, a poor nutritional status and decline in lung function. This study evaluated enterocyte damage and intestinal inflammation in CF and studied its associations with nutritional status, CF-related morbidities such as impaired lung function and diabetes, and medication use.MethodsSixty-eight CF patients and 107 controls were studied. Levels of serum intestinal-fatty acid binding protein (I-FABP), a specific marker for enterocyte damage, were retrospectively determined. The faecal intestinal inflammation marker calprotectin was prospectively studied. Nutritional status, lung function (FEV1), exocrine pancreatic insufficiency (EPI), CF-related diabetes (CFRD) and use of proton pump inhibitors (PPI) were obtained from the medical charts.ResultsSerum I-FABP levels were elevated in CF patients as compared with controls (p<0.001), and correlated negatively with FEV1 predicted value in children (r-.734, p<0.05). Faecal calprotectin level was elevated in 93% of CF patients, and correlated negatively with FEV1 predicted value in adults (r-.484, p<0.05). No correlation was found between calprotectin levels in faeces and sputum. Faecal calprotectin level was significantly associated with the presence of CFRD, EPI, and PPI use.ConclusionThis study demonstrated enterocyte damage and intestinal inflammation in CF patients, and provides evidence for an inverse correlation between enteropathy and lung function. The presented associations of enteropathy with important CF-related morbidities further emphasize the clinical relevance.  相似文献   
6.
7.
The afa-3 gene cluster determines the formation of an afimbrial adhesive sheath that is expressed by uropathogenic as well as diarrhoea-associated Escherichia coli strains. It contains six genes ( afaA–afaF  ), among which the afaE3 gene is known to code for the structural AfaE-III adhesin (previously designated AFA-III), whereas no role has yet been identified for the afaD gene product. The afa-3 gene cluster is closely related to the daa operon that codes for an adhesin, the F1845 adhesin, which is highly related to the AfaE-III adhesin; however, unlike the AfaE-III adhesin, F1845 is a fimbrial adhesin. Reported in this work is the construction of chimeras between the afa-3 and daa operons. Analyses of the phenotypes conferred by these afa-3 / daa chimeric clusters allowed us to conclude that the biogenesis of a fimbrial or an afimbrial adhesin is fully determined by the amino acid sequence of the AfaE-III and F1845 adhesins. Moreover, the role of the AfaD product in the biosynthesis of the afimbrial sheath was assessed by immunogold and immunofluorescence experiments. The AfaD and the AfaE-III products were purified and used to raise rabbit and mouse antisera. Similar to AfaE-III, AfaD was found to be a surface-exposed protein as well as an adhesin; both AfaD and AfaE-III are concomittantly expressed by the bacterial cell. These results demonstrate, for the first time, that the afimbrial adhesive sheath expressed by pathogenic E. coli is composed of two adhesins.  相似文献   
8.
Total parenteral nutrition (TPN) is associated with the development of parenteral nutrition-associated liver disease (PNALD) in infants. Fish oil-based lipid emulsions can reverse PNALD, yet it is unknown if they can prevent PNALD. We studied preterm pigs administered TPN for 14 days with either 100% soybean oil (IL), 100% fish oil (OV), or a mixture of soybean oil, medium chain triglycerides (MCTs), olive oil, and fish oil (SL); a group was fed formula enterally (ENT). In TPN-fed pigs, serum direct bilirubin, gamma glutamyl transferase (GGT), and plasma bile acids increased after the 14 day treatment but were highest in IL pigs. All TPN pigs had suppressed hepatic expression of farnesoid X receptor (FXR), cholesterol 7-hydroxylase (CYP7A1), and plasma 7α-hydroxy-4-cholesten-3-one (C4) concentrations, yet hepatic CYP7A1 protein abundance was increased only in the IL versus ENT group. Organic solute transporter alpha (OSTα) gene expression was the highest in the IL group and paralleled plasma bile acid levels. In cultured hepatocytes, bile acid-induced bile salt export pump (BSEP) expression was inhibited by phytosterol treatment. We show that TPN-fed pigs given soybean oil developed cholestasis and steatosis that was prevented with both OV and SL emulsions. Due to the presence of phytosterols in the SL emulsion, the differences in cholestasis and liver injury among lipid emulsion groups in vivo were weakly correlated with plasma and hepatic phytosterol content.  相似文献   
9.
10.

Objective

Muscle carnosine and its methylated form anserine are histidine-containing dipeptides. Both dipeptides have the ability to quench reactive carbonyl species and previous studies have shown that endogenous tissue levels are decreased in chronic diseases, such as diabetes.

Design and Methods

Rodent study: Skeletal muscles of rats and mice were collected from 4 different diet-intervention studies, aiming to induce various degrees of glucose intolerance: 45% high-fat feeding (male rats), 60% high-fat feeding (male rats), cafeteria feeding (male rats), 70% high-fat feeding (female mice). Body weight, glucose-tolerance and muscle histidine-containing dipeptides were assessed. Human study: Muscle biopsies were taken from m. vastus lateralis in 35 males (9 lean, 8 obese, 9 prediabetic and 9 newly diagnosed type 2 diabetic patients) and muscle carnosine and gene expression of muscle fiber type markers were measured.

Results

Diet interventions in rodents (cafeteria and 70% high-fat feeding) induced increases in body weight, glucose intolerance and levels of histidine-containing dipeptides in muscle. In humans, obese, prediabetic and diabetic men had increased muscle carnosine content compared to the lean (+21% (p>0.1), +30% (p<0.05) and +39% (p<0.05), respectively). The gene expression of fast-oxidative type 2A myosin heavy chain was increased in the prediabetic (1.8-fold, p<0.05) and tended to increase in the diabetic men (1.6-fold, p = 0.07), compared to healthy lean subjects.

Conclusion

Muscle histidine-containing dipeptides increases with progressive glucose intolerance, in male individuals (cross-sectional). In addition, high-fat diet-induced glucose intolerance was associated with increased muscle histidine-containing dipeptides in female mice (interventional). Increased muscle carnosine content might reflect fiber type composition and/or act as a compensatory mechanism aimed at preventing cell damage in states of impaired glucose tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号