首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3285篇
  免费   302篇
  国内免费   518篇
  2024年   5篇
  2023年   80篇
  2022年   114篇
  2021年   272篇
  2020年   234篇
  2019年   241篇
  2018年   208篇
  2017年   165篇
  2016年   190篇
  2015年   296篇
  2014年   304篇
  2013年   319篇
  2012年   341篇
  2011年   278篇
  2010年   155篇
  2009年   139篇
  2008年   142篇
  2007年   105篇
  2006年   92篇
  2005年   73篇
  2004年   36篇
  2003年   45篇
  2002年   42篇
  2001年   25篇
  2000年   23篇
  1999年   23篇
  1998年   17篇
  1997年   22篇
  1996年   21篇
  1995年   9篇
  1994年   13篇
  1993年   3篇
  1992年   10篇
  1991年   15篇
  1990年   12篇
  1989年   10篇
  1988年   9篇
  1987年   3篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有4105条查询结果,搜索用时 15 毫秒
1.
Synonymous codon usage bias (SCUB) is a common event that a non-uniform usage of codons often occurs in nearly all organisms. We previously found that SCUB is correlated with both intron number and exon position in the plant nuclear genome but not in the plastid genome; SCUB in both nuclear and plastid genome can mirror the evolutionary specialization. However, how about the rules in the mitochondrial genome has not been addressed. Here, we present an analysis of SCUB in the mitochondrial genome, based on 24 plant species ranging from algae to land plants. The frequencies of NNA and NNT (A- and T-ending codons) are higher than those of NNG and NNC, with the strongest preference in bryophytes and the weakest in land plants, suggesting an association between SCUB and plant evolution. The preference for NNA and NNT is more evident in genes harboring a greater number of introns in land plants, but the bias to NNA and NNT exhibits even among exons. The pattern of SCUB in the mitochondrial genome differs in some respects to that present in both the nuclear and plastid genomes.  相似文献   
2.
The occurrence of Nyctereutes during the Plio-Pleistocene has long been reported in northern China, with the highest abundance in the Nihewan Basin. However, due to site dispersal, the coexistence of different taxa, and lack of a precise stratigraphic constraint, the evolutionary process of this genus remains enigmatic. In this study, we re-examined the available Nyctereutes materials recovered from the Nihewan Basin housed in IVPP and Tianjin Natural History Museum, in addition to a newly recovered specimen from our latest excavation. Furthermore, we compared these materials with Nyctereutes fossils recovered from the Pleistocene Zhoukoudian sites near Beijing and the extant species N. procyonoides. Our analysis of the upper molar morphometry reveals the variations in size and dietary characteristics within different species of Nyctereutes during the late Plio-Pleistocene. The examination of molars indicates an increase in the size of Nyctereutes sinensis compared to early Pliocene N. tingi as well as changes in the molar teeth morphology. Subsequently, changes in diet or environmental factors possibly caused the decrease of body size in the late Pleistocene. We also estimate an age constraint for the fossils of N. sinensis from the Xiashagou section by relocating Licent's localities and referring of updated magnetostratigraphic data.  相似文献   
3.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes trafficking and activation of the GluR1 subunit of α-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) during synaptic plasticity. GluR1 is also modulated in parallel by multiprotein complexes coordinated by synapse-associated protein 97 (SAP97) that contain A-kinase anchoring protein 79/150 (AKAP79/150), protein kinase A, and protein phosphatase 2B. Here we show that SAP97 is present in CaMKII immune complexes isolated from rodent brain as well as from HEK293 cells co-expressing CaMKIIα and SAP97. CaMKIIα phosphorylated recombinant SAP97 within immune complexes in vitro and in intact cells. Four alternative mRNA splice variants of SAP97 expressing combinations of four inserts (I2, I3, I4, I5) in the U5 region between Src homology 3 (SH3) and guanylyl kinase-like (GK) domains were identified in rat brain at postnatal day 21. CaMKIIα preferentially phosphorylated a full-length SAP97 and a glutathione S-transferase (GST) fusion protein containing the I3 and I5 inserts (SAP97-I3I5 and GST-SH3-I3I5-GK, respectively) and also specifically interacted with GST-SH3-I3I5-GK compared with GST proteins containing other naturally occurring insert combinations. AKAP79/150 also directly and specifically bound only to GST-SH3-I3I5-GK, but CaMKII phosphorylation of GST-SH3-I3I5-GK prevented this interaction. AKAP79-dependent down-regulation of GluR1 AMPAR currents was ablated by overexpression of SAP97-I2I5 (which does not bind AKAP79) or by infusion of active CaMKIIα. Collectively, the data suggest that CaMKIIα targets a specific SAP97 splice variant to disengage AKAP79/150 from regulating GluR1 AMPARs, providing new insight into protein-protein interactions and phosphorylation events that are required for normal regulation of glutamatergic synaptic transmission, learning, and memory.  相似文献   
4.
Uterine proprotein convertase (PC) 6 plays a critical role in embryo implantation and is pivotal for pregnancy establishment. Inhibition of PC6 may provide a novel approach for the development of non-hormonal and female-controlled contraceptives. We investigated a class of five synthetic non-peptidic small molecule compounds that were previously reported as potent inhibitors of furin, another PC member. We examined (i) the potency of these compounds in inhibiting PC6 activity in vitro; (ii) their binding modes in the PC6 active site in silico; (iii) their efficacy in inhibiting PC6-dependent cellular processes essential for embryo implantation using human cell-based models. All five compounds showed potent inhibition of PC6 activity in vitro, and in silico docking demonstrated that these inhibitors could adopt a similar binding mode in the PC6 active site. However, when these compounds were tested for their inhibition of decidualization of primary human endometrial stromal cells, a PC6-dependent cellular process critical for embryo implantation, only one (compound 1o) showed potent inhibition. The lack of activity in the cell-based assay may reflect the inability of the compounds to penetrate the cell membrane. Because compound''s lipophilicity is linked to cell penetration, a measurement of lipophilicity (logP) was calculated for each compound. Compound 1o is unique as it appears the most lipophilic among the five compounds. Compound 1o also inhibited another crucial PC6-dependent process, the attachment of human trophoblast spheroids to endometrial epithelial cells (a model for human embryo attachment). We thus identified compound 1o as a potent small molecule PC6 inhibitor with pharmaceutical potential to inhibit embryo implantation. Our findings also highlight that human cell-based functional models are vital to complement the biochemical and in silico analyses in the selection of promising drug candidates. Further investigations for compound 1o are warranted in animal models to test its utility as an implantation-inhibiting contraceptive drug.  相似文献   
5.
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell development and function. Numerous studies have shown the significant roles of miRNAs in regulating immune cells including natural killer (NK) cells. However, little is known about the role of miRNAs in NK cells with aging. We previously demonstrated that the aged C57BL/6 mice have significantly decreased proportion of mature (CD27CD11b+) NK cells compared with young mice, indicating impaired maturation of NK cells with aging. Here, we performed deep sequencing of CD27+ NK cells from young and aged mice. Profiling of the miRNome (global miRNA expression levels) revealed that 49 miRNAs displayed a twofold or greater difference in expression between young and aged NK cells. Among these, 30 miRNAs were upregulated and 19 miRNAs were downregulated in the aged NK cells. We found that the expression level of miR‐l8la‐5p was increased with the maturation of NK cells, and significantly decreased in NK cells from the aged mice. Knockdown of miR‐181a‐5p inhibited NK cell development in vitro and in vivo. Furthermore, miR‐181a‐5p is highly conserved in mice and human. MiR‐181a‐5p promoted the production of IFN‐γ and cytotoxicity in stimulated NK cells from both mice and human. Importantly, miR‐181a‐5p level markedly decreased in NK cells from PBMC of elderly people. Thus, our results demonstrated that the miRNAs profiles in NK cells change with aging, the decreased level of miR‐181a‐5p contributes to the defective NK cell development and function with aging. This opens new strategies to preserve or restore NK cell function in the elderly.  相似文献   
6.
7.
The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.  相似文献   
8.
Following an extensive review of the literature, we further analyze the published data to examine the health effects of indoor exposure to particulate matter (PM) of outdoor origin. We obtained data on all-cause, cardiovascular, and respiratory mortality per 10 μg/m3 increase in outdoor PM10 or PM2.5; the infiltration factors for buildings; and estimated time spent outdoors by individuals in the United States, Europe, China, and globally. These data were combined log-linear exposure–response model to estimate the all-cause, cardiovascular, and respiratory mortality of exposure to indoor PM pollution of outdoor origin. Indoor PM pollution of outdoor origin is a cause of considerable mortality, accounting for 81% to 89% of the total increase in mortality associated with exposure to outdoor PM pollution for the studied regions. The findings suggest that enhancing the capacity of buildings to protect occupants against exposure to outdoor PM pollution has significant potential to improve public health outcomes.  相似文献   
9.
10.
In flowering plants, the somatic-to-reproductive cell fate transition is marked by the specification of spore mother cells (SMCs) in floral organs of the adult plant. The female SMC (megaspore mother cell, MMC) differentiates in the ovule primordium and undergoes meiosis. The selected haploid megaspore then undergoes mitosis to form the multicellular female gametophyte, which will give rise to the gametes, the egg cell and central cell, together with accessory cells. The limited accessibility of the MMC, meiocyte and female gametophyte inside the ovule is technically challenging for cytological and cytogenetic analyses at single cell level. Particularly, direct or indirect immunodetection of cellular or nuclear epitopes is impaired by poor penetration of the reagents inside the plant cell and single-cell imaging is demised by the lack of optical clarity in whole-mount tissues.Thus, we developed an efficient method to analyze the nuclear organization and chromatin modification at high resolution of single cell in whole-mount embedded Arabidopsis ovules. It is based on dissection and embedding of fixed ovules in a thin layer of acrylamide gel on a microscopic slide. The embedded ovules are subjected to chemical and enzymatic treatments aiming at improving tissue clarity and permeability to the immunostaining reagents. Those treatments preserve cellular and chromatin organization, DNA and protein epitopes. The samples can be used for different downstream cytological analyses, including chromatin immunostaining, fluorescence in situ hybridization (FISH), and DNA staining for heterochromatin analysis. Confocal laser scanning microscopy (CLSM) imaging, with high resolution, followed by 3D reconstruction allows for quantitative measurements at single-cell resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号