首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   20篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   4篇
  2019年   8篇
  2018年   10篇
  2017年   11篇
  2016年   11篇
  2015年   19篇
  2014年   23篇
  2013年   21篇
  2012年   33篇
  2011年   22篇
  2010年   20篇
  2009年   12篇
  2008年   13篇
  2007年   18篇
  2006年   15篇
  2005年   10篇
  2004年   14篇
  2003年   3篇
  2002年   10篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1980年   1篇
  1968年   1篇
  1965年   2篇
排序方式: 共有303条查询结果,搜索用时 31 毫秒
1.
Wheat microspores mechanically isolated from the anthers before culture and isolated from the anthers during the hole culture period in a chemically defined medium resulted in proembryos, embryos and finally plants. Of the four genotypes included, all responded with proembryos, and the two spring wheats Ciano and Walter gave rise to macroscopic embryos and plants. The frequency of embryo regeneration and the frequency of albino plants in both Ciano and Walter was in accordance with previously obtained results with anther culture derived material.Abbreviations 2,4-d 2,4-dichlorophenoxy acetic acid - NAA 1-naphthaleneacetic acid  相似文献   
2.
International Journal of Peptide Research and Therapeutics - Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with widespread occurrence and diverse functions. PACAP...  相似文献   
3.
Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF). CF-related bone disease (CFBD) is characterized by uncoupled bone turnover—impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR), the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr−/−) mouse model. In the murine calvarial organ culture assay, Cftr−/− calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+) littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr−/− compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl) mRNA was detected, significantly less osteoprotegerin (Opg) was expressed in Cftr−/− compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr−/− murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt signaling was defective in Cftr−/− murine calvarial osteoblasts. These results support that genetic inactivation of CFTR in osteoblasts contributes to low bone mass and that targeting osteoblasts may represent an effective strategy to treat CFBD.  相似文献   
4.
Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.  相似文献   
5.
6.
The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8+ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.  相似文献   
7.
BackgroundProprotein convertase subtilisin/kexin type 9 (PSCK9) is secreted mainly from the liver and binds to the low-density lipoprotein receptor (LDLR), reducing LDLR availability and thus resulting in an increase in LDL-cholesterol. While the LDLR has been implicated in the cell entry process of the hepatitis C virus (HCV), overexpression of an artificial non-secreted, cell membrane-bound form of PCSK9 has also been shown to reduce surface expression of CD81, a major component of the HCV entry complex, leading to concerns that pharmacological inhibition of PCSK9 may increase susceptibility to HCV infection by increasing either CD81 or LDLR availability. Here, we evaluated effects of PCSK9 and PCSK9 blockade on CD81 levels and HCV entry with a physiologically relevant model using native secreted PCSK9 and a monoclonal antibody to PCSK9, alirocumab.ConclusionThese results suggest that inhibition of PCSK9 with alirocumab has no effect on CD81 and does not result in increased susceptibility to HCV entry.  相似文献   
8.
9.
Separation of the heterogeneous lignin macromolecule in fractions with increased homogeneity, as well as different structural (molar mass) and functional (hydroxy groups, ‐OH) features is important in terms of its use as a chemical building block. For this purpose, three thermal separation techniques were investigated and compared: solvent extraction, successive precipitation and ultrafiltration. One important issue in this context is the utilization of organic solvents with low boiling points to ensure a simple and efficient recovery. In addition to a softwood Kraft lignin (Indulin AT) as reference lignin, two sulfur‐free Organosolv lignins from short rotation coppice (“poplar with bark”) and from the energy grass Miscanthus × gigantheus were investigated. The lignins were separated into low, medium and high molecular weight fractions. Due to the different initial structural features and the associated varying solubility properties in such lignins, different organic solvents were needed for dissolution and precipitation of the individual lignin fractions. The polarity of the used solvent is one key factor regarding the yield of the soluble fraction and the success of molecular sorting into low, medium, and high molecular weight. Further structural features, for example the aliphatic OH‐group content increased with rising molecular weight of poplar, miscanthus, and Kraft lignin from minimum 0.72, 0.3, and 1.6 mmol/g to maximum 2.4, 1.6, and 2.8 mmol/g, respectively. The number of phenolic OH‐groups decreased from maximum 3.8, 4.3, and 4.2 to minimum 1.4, 2.7, and 2.9, respectively. The presented work illustrate options regarding the molecular sorting of several lignin types with three thermal techniques into fractions differing in key properties (yield, molecular weight, polydispersity, functional groups) for material applications.  相似文献   
10.

Nitrogen (N) inputs from atmospheric deposition can increase soil organic carbon (SOC) storage in temperate and boreal forests, thereby mitigating the adverse effects of anthropogenic CO2 emissions on global climate. However, direct evidence of N-induced SOC sequestration from low-dose, long-term N addition experiments (that is, addition of < 50 kg N ha−1 y−1 for > 10 years) is scarce worldwide and virtually absent for European temperate forests. Here, we examine how tree growth, fine roots, physicochemical soil properties as well as pools of SOC and soil total N responded to 20 years of regular, low-dose N addition in two European coniferous forests in Switzerland and Denmark. At the Swiss site, the addition of 22 kg N ha−1 y−1 (or 1.3 times throughfall deposition) stimulated tree growth, but decreased soil pH and exchangeable calcium. At the Danish site, the addition of 35 kg N ha−1 y−1 (1.5 times throughfall deposition) impaired tree growth, increased fine root biomass and led to an accumulation of N in several belowground pools. At both sites, elevated N inputs increased SOC pools in the moderately decomposed organic horizons, but decreased them in the mineral topsoil. Hence, long-term N addition led to a vertical redistribution of SOC pools, whereas overall SOC storage within 30 cm depth was unaffected. Our results imply that an N-induced shift of SOC from older, mineral-associated pools to younger, unprotected pools might foster the vulnerability of SOC in temperate coniferous forest soils.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号