首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
Chemokine receptors and their ligands play a prominent role in immune regulation but many have also been implicated in inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, allograft rejection after transplantation, and also in cancer metastasis. Most approaches to therapeutically target the chemokine system involve targeting of chemokine receptors with low molecular weight antagonists. Here we describe the selection and characterization of an unprecedented large and diverse panel of neutralizing Nanobodies (single domain camelid antibodies fragment) directed against several chemokines. We show that the Nanobodies directed against CCL2 (MCP-1), CCL5 (RANTES), CXCL11 (I-TAC), and CXCL12 (SDF-1α) bind the chemokines with high affinity (at nanomolar concentration), thereby blocking receptor binding, inhibiting chemokine-induced receptor activation as well as chemotaxis. Together, we show that neutralizing Nanobodies can be selected efficiently for effective and specific therapeutic treatment against a wide range of immune and inflammatory diseases.  相似文献   
2.

Background  

Discovery of new medicinal agents from natural sources has largely been an adventitious process based on screening of plant and microbial extracts combined with bioassay-guided identification and natural product structure elucidation. Increasingly rapid and more cost-effective genome sequencing technologies coupled with advanced computational power have converged to transform this trend toward a more rational and predictive pursuit.  相似文献   
3.

Background

Cigarette smoking is the most important risk factor for Chronic Obstructive Pulmonary Disease (COPD). Only a subgroup of smokers develops COPD and it is unclear why these individuals are more susceptible to the detrimental effects of cigarette smoking. The risk to develop COPD is known to be higher in individuals with familial aggregation of COPD. This study aimed to investigate if acute systemic and local immune responses to cigarette smoke differentiate between individuals susceptible or non-susceptible to develop COPD, both at young (18-40 years) and old (40-75 years) age.

Methods

All participants smoked three cigarettes in one hour. Changes in inflammatory markers in peripheral blood (at 0 and 3 hours) and in bronchial biopsies (at 0 and 24 hours) were investigated. Acute effects of smoking were analyzed within and between susceptible and non-susceptible individuals, and by multiple regression analysis.

Results

Young susceptible individuals showed significantly higher increases in the expression of FcγRII (CD32) in its active forms (A17 and A27) on neutrophils after smoking (p = 0.016 and 0.028 respectively), independently of age, smoking status and expression of the respective markers at baseline. Smoking had no significant effect on mediators in blood or inflammatory cell counts in bronchial biopsies. In the old group, acute effects of smoking were comparable between healthy controls and COPD patients.

Conclusions

We show for the first time that COPD susceptibility at young age associates with an increased systemic innate immune response to cigarette smoking. This suggests a role of systemic inflammation in the early induction phase of COPD.

Trial registration

Clinicaltrials.gov: NCT00807469

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0121-2) contains supplementary material, which is available to authorized users.  相似文献   
4.
During aging, non-enzymatic glycation results in the formation and accumulation of the advanced glycation endproduct pentosidine in long-lived proteins, such as articular cartilage collagen. In the present study, we investigated whether pentosidine accumulation also occurs in cartilage aggrecan. Furthermore, pentosidine levels in aggrecan subfractions of different residence time were used to explore pentosidine levels as a quantitative measure of aggrecan turnover. In order to compare protein turnover rates, protein residence time was measured as racemization of aspartic acid. As has previously been shown for collagen, pentosidine levels increase with age in cartilage aggrecan. Consistent with the faster turnover of aggrecan compared to collagen, the rate of pentosidine accumulation was threefold lower in aggrecan than in collagen. In the subfractions of aggrecan, pentosidine levels increased with protein residence time. These pentosidine levels were used to estimate the half-life of the globular hyaluronan-binding domain of aggrecan to be 19.5 years. This value is in good agreement with the half-life of 23.5 years that was estimated based on aspartic acid racemization. In aggrecan from osteoarthritic (OA) cartilage, decreased pentosidine levels were found compared with normal cartilage, which reflects increased aggrecan turnover during the OA disease process. In conclusion, we showed that pentosidine accumulates with age in aggrecan and that pentosidine levels can be used as a measure of turnover of long-lived proteins, both during normal aging and during disease.  相似文献   
5.
Peroxiredoxin I and II are both 2-Cys members of the peroxiredoxin family of antioxidant enzymes and inactivate hydrogen peroxide. On western blotting, both enzymes appeared as 22-kD proteins and were present in the sclera, retina and iris. Immunohistochemistry showed strong cytoplasmic labeling in the basal cells of the corneal epithelial layer and the corneoscleral limbus. The melanocytes within the stroma of the iris and the anterior epithelial cells of the lens also showed strong cytoplasmic labeling. The fibrous structure of the stroma and the posterior surface of the ciliary body were also labeled. There was also strong labeling for both enzymes in the photoreceptors and the inner and outer plexiform layers of the retina. There was increased labeling of peroxiredoxin I and II in pterygium. In normal conjunctiva and cornea, only the basal cell layer showed labeling for peroxiredoxin I and II, whereas, in pterygia, there was strong cytoplasmic labeling in most cells involving the full thickness of the epithelium. Co-localization of the DNA oxidation product 8-hydroxy-2’-deoxyguanosine antibody with the nuclear dye 4’,6’-diamidino-2-phenylindole dihydrochloride indicated that the majority of the oxidative damage was cytoplasmic; this suggested that the mitochondrial DNA was most affected by the UV radiation in this condition.  相似文献   
6.

Background

We developed a new version of the open source software package Peptrix that can yet compare large numbers of Orbitrap? LC-MS data. The peptide profiling results for Peptrix on MS1 spectra were compared with those obtained from a small selection of open source and commercial software packages: msInspect, Sieve? and Progenesis?. The properties compared in these packages were speed, total number of detected masses, redundancy of masses, reproducibility in numbers and CV of intensity, overlap of masses, and differences in peptide peak intensities. Reproducibility measurements were taken for the different MS1 software applications by measuring in triplicate a complex peptide mixture of immunoglobulin on the Orbitrap? mass spectrometer. Values of peptide masses detected from the high intensity peaks of the MS1 spectra by peptide profiling were verified with values of the MS2 fragmented and sequenced masses that resulted in protein identifications with a significant score.

Findings

Peptrix finds about the same number of peptide features as the other packages, but peptide masses are in some cases approximately 5 to 10 times less redundant present in the peptide profile matrix. The Peptrix profile matrix displays the largest overlap when comparing the number of masses in a pair between two software applications. The overlap of peptide masses between software packages of low intensity peaks in the spectra is remarkably low with about 50% of the detected masses in the individual packages. Peptrix does not differ from the other packages in detecting 96% of the masses that relate to highly abundant sequenced proteins. MS1 peak intensities vary between the applications in a non linear way as they are not processed using the same method.

Conclusions

Peptrix is capable of peptide profiling using Orbitrap? files and finding differential expressed peptides in body fluid and tissue samples. The number of peptide masses detected in Orbitrap? files can be increased by using more MS1 peptide profiling applications, including Peptrix, since it appears from the comparison of Peptrix with the other applications that all software packages have likely a high false negative rate of low intensity peptide peaks (missing peptides).  相似文献   
7.

Background

The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene.

Results

Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo.

Conclusions

Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.
  相似文献   
8.
Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins.  相似文献   
9.

Background

Canine hemangiosarcoma (HSA) is a malignant tumor with poor long-term prognosis due to development of metastasis despite aggressive treatment. The phosphatidyl-inositol-3 kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is involved in its endothelial pathologies; however, it remains unknown how this pathway plays a role in canine HSA. Here, we characterized new canine HSA cell lines derived from nude mice-xenografted canine HSAs and investigated the deregulation of the signaling pathways in these cell lines.

Results

Seven canine HSA cell lines were established from 3 xenograft canine HSAs and showed characteristics of endothelial cells (ECs), that is, uptake of acetylated low-density lipoprotein and expression of canine-specific CD31 mRNA. They showed varied morphologies and mRNA expression levels for VEGF-A, bFGF, HGF, IGF-I, EGF, PDGF-B, and their receptors. Cell proliferation was stimulated by these growth factors and fetal bovine serum (FBS) in 1 cell line and by FBS alone in 3 cell lines. However, cell proliferation was not stimulated by growth factors and FBS in the remaining 3 cell lines. Phosphorylated p44/42 Erk1/2 was increased by FBS stimulation in 4 cell lines. In contrast, phosphorylation of Akt at Ser473, mTOR complex 1 (mTORC1) at Ser2448, and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) at Ser65 was high in serum-starved condition and not altered by FBS stimulation in 6 cell lines, despite increased phosphorylation of these residues in normal canine ECs. This suggested that the mTORC2/Akt/4E-BP1 pathway was constitutively activated in these 6 canine HSA cell lines. After cell inoculation into nude mice, canine HSA tumors were formed from 4 cell lines and showed Akt and 4E-BP1 phosphorylation identical to the parental cell lines.

Conclusions

Our findings suggest that the present cell lines may be useful tools for investigating the role of the mTORC2/Akt/4E-BP1 pathway in canine HSA formation both in vivo and in vitro.  相似文献   
10.
The hallmark of fibrotic processes is an excessive accumulation of collagen. The deposited collagen shows an increase in pyridinoline cross-links, which are derived from hydroxylated lysine residues within the telopeptides. This change in cross-linking is related to irreversible accumulation of collagen in fibrotic tissues. The increase in pyridinoline cross-links is likely to be the result of increased activity of the enzyme responsible for the hydroxylation of the telopeptides (telopeptide lysyl hydroxylase, or TLH). Although the existence of TLH has been postulated, the gene encoding TLH has not been identified. By analyzing the genetic defect of Bruck syndrome, which is characterized by a pyridinoline deficiency in bone collagen, we found two missense mutations in exon 17 of PLOD2, thereby identifying PLOD2 as a putative TLH gene. Subsequently, we investigated fibroblasts derived from fibrotic skin of systemic sclerosis (SSc) patients and found that PLOD2 mRNA is highly increased indeed. Furthermore, increased pyridinoline cross-link levels were found in the matrix deposited by SSc fibroblasts, demonstrating a clear link between mRNA levels of the putative TLH gene (PLOD2) and the hydroxylation of lysine residues within the telopeptides. These data underscore the significance of PLOD2 in fibrotic processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号