首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12473篇
  免费   918篇
  国内免费   2篇
  2023年   60篇
  2022年   43篇
  2021年   256篇
  2020年   181篇
  2019年   210篇
  2018年   240篇
  2017年   224篇
  2016年   367篇
  2015年   576篇
  2014年   630篇
  2013年   810篇
  2012年   1205篇
  2011年   1694篇
  2010年   921篇
  2009年   920篇
  2008年   727篇
  2007年   657篇
  2006年   659篇
  2005年   542篇
  2004年   532篇
  2003年   438篇
  2002年   439篇
  2001年   87篇
  2000年   70篇
  1999年   91篇
  1998年   84篇
  1997年   57篇
  1996年   55篇
  1995年   58篇
  1994年   56篇
  1993年   35篇
  1992年   57篇
  1991年   48篇
  1990年   29篇
  1989年   38篇
  1988年   24篇
  1987年   19篇
  1986年   23篇
  1985年   23篇
  1984年   13篇
  1983年   16篇
  1982年   13篇
  1981年   13篇
  1980年   15篇
  1978年   9篇
  1977年   13篇
  1976年   8篇
  1975年   8篇
  1973年   10篇
  1968年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
BackgroundDengue fever is a public health problem in the tropical and sub-tropical world. Dengue cases have grown dramatically in recent years as well as dengue mortality. Colombia has experienced periodic dengue outbreaks with numerous dengue related-deaths, where the Santander department has been particularly affected. Although social determinants of health (SDH) shape health outcomes, including mortality, it is not yet understood how these affect dengue mortality. The aim of this pilot study was to develop and pre-test a social autopsy (SA) tool for dengue mortality.ConclusionsThe SA tool is based on the scientific literature, a validated conceptual framework, researchers’ and health professionals’ expertise, and a pilot study. It is the first time that a SA tool has been created for the dengue mortality context. Our work furthers the study on SDH and how these are applied to neglected tropical diseases, like dengue. This tool could be integrated in surveillance systems to provide complementary information on the modifiable and avoidable death-related factors and therefore, be able to formulate interventions for dengue mortality reduction.  相似文献   
3.
4.
Transforming growth factor-β (TGF-β) and its related proteins regulate broad aspects of body development, including cell proliferation, differentiation, apoptosis and gene expression, in various organisms. Deregulated TGF-β function has been causally implicated in the generation of human fibrotic disorders and in tumor progression. Nevertheless, the molecular mechanisms of TGF-β action remained essentially unknown until recently. Here, we discuss recent progress in our understanding of the mechanism of TGF-β signal transduction with respect to the regulation of gene expression, the control of cell phenotype and the potential usage TGF-β for the treatment of human diseases.  相似文献   
5.
6.
Accurate transfer RNA (tRNA) aminoacylation by aminoacyl-tRNA synthetases controls translational fidelity. Although tRNA synthetases are generally highly accurate, recent results show that the methionyl-tRNA synthetase (MetRS) is an exception. MetRS readily misacylates non-methionyl tRNAs at frequencies of up to 10% in mammalian cells; such mismethionylation may serve a beneficial role for cells to protect their own proteins against oxidative damage. The Escherichia coli MetRS mismethionylates two E. coli tRNA species in vitro, and these two tRNAs contain identity elements for mismethionylation. Here we investigate tRNA mismethionylation in Saccharomyces cerevisiae. tRNA mismethionylation occurs at a similar extent in vivo as in mammalian cells. Both cognate and mismethionylated tRNAs have similar turnover kinetics upon cycloheximide treatment. We identify specific arginine/lysine to methionine-substituted peptides in proteomic mass spectrometry, indicating that mismethionylated tRNAs are used in translation. The yeast MetRS is part of a complex containing the anchoring protein Arc1p and the glutamyl-tRNA synthetase (GluRS). The recombinant Arc1p–MetRS–GluRS complex binds and mismethionylates many tRNA species in vitro. Our results indicate that the yeast MetRS is responsible for extensive misacylation of non-methionyl tRNAs, and mismethionylation also occurs in this evolutionary branch.  相似文献   
7.
8.
AimTo assess the role of the young radiation oncologist in the context of important recent advancements in the field of radiation oncology, and to explore new perspectives and competencies of the young radiation oncologist.BackgroundRadiation oncology is a field that has rapidly advanced over the last century. It holds a rich tradition of clinical care and evidence-based practice, and more recently has advanced with revolutionary innovations in technology and computer science, as well as pharmacology and molecular biology.Materials and methodsSeveral young radiation oncologists from different countries evaluated the current status and future directions of radiation oncology.ResultsFor young radiation oncologists, it is important to reflect on the current practice and future directions of the specialty as it relates to the role of the radiation oncologist in the comprehensive management of cancer patients. Radiation oncologists are responsible for the radiation treatment provided to patients and its subsequent impact on patients’ quality of life. Young radiation oncologists must proactively master new clinical, biological and technical information, as well as lead radiation oncology teams consisting of physicists, dosimetrists, nurses and technicians.ConclusionsThe role of the young radiation oncologist in the field of oncology should be proactive in developing new competencies. Above all, it is important to remember that we are dealing with the family members and loved ones of many individuals during the most difficult part of their lives.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号