首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5735篇
  免费   347篇
  国内免费   1篇
  2023年   15篇
  2022年   13篇
  2021年   65篇
  2020年   51篇
  2019年   71篇
  2018年   84篇
  2017年   89篇
  2016年   127篇
  2015年   178篇
  2014年   209篇
  2013年   315篇
  2012年   553篇
  2011年   1088篇
  2010年   547篇
  2009年   586篇
  2008年   255篇
  2007年   257篇
  2006年   263篇
  2005年   211篇
  2004年   237篇
  2003年   204篇
  2002年   200篇
  2001年   50篇
  2000年   37篇
  1999年   49篇
  1998年   44篇
  1997年   25篇
  1996年   27篇
  1995年   24篇
  1994年   29篇
  1993年   21篇
  1992年   19篇
  1991年   23篇
  1990年   9篇
  1989年   13篇
  1988年   12篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1968年   3篇
  1962年   2篇
  1874年   3篇
  1873年   4篇
  1872年   4篇
  1871年   2篇
  1858年   2篇
  1856年   5篇
  1855年   4篇
排序方式: 共有6083条查询结果,搜索用时 14 毫秒
1.
2.
3.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
4.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
5.
6.
7.
HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses’ receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.  相似文献   
8.
9.
The effect of HCO 3 - on ion absorption by young corn roots was studied in conditions allowing the independent control of both the pH of uptake solution and the CO2 partial pressure in air bubbled through the solution. The surface pH shift in the vicinity of the outer surface of the plasmalemma induced by active H+ excretion was estimated using the initial uptake rate of acetic acid as a pH probe (Sentenac and Grignon (1987) Plant Physiol. 84, 1367). Acetic acid and orthophosphate uptake rates and NO 3 - accumulation were slowed down, while 86Rb+ uptake and K+ accumulation rates were increased by HCO 3 - . These effects were similar to those induced by 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid/2-amino-2-(hydroxymethyl)-1,3-propanediol (Hepes-Tris). They were more pronounced when the H+ excretion was strong, were rapidly reversible and were not additive to those of Hepes-Tris. The hypothesis is advanced that the buffering system CO2/H2CO3/HCO 3 - accelerated the diffusion of equivalent H+ inside the cell wall towards the medium. This attenuated the surface pH shift in the vicinity the plasma membrane and affected the coupling between the proton pump and cotransport systems.Abbreviations FW fresh weight - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Jaa acetic acid influx - JK + K+ influx - JPi orthophosphate influx - Mes 2-(N-morpholino)ethanesulfonic acid - pCO2 CO2 partial pressure - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
10.
The carcinogenicity of several groups of carcinogens is evoked with particular reference to Dibenzo(c,g)carbazole derivatives. The activity of these derivatives is discussed with respect to their species and organ specificity. The enzymatic equipment is decisive as to whether the compounds formed can react with DNA or are simply detoxified and eliminated. All these carcinogens are complete carcinogens, i.e. they have the property of both initiation and promotion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号