首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   14篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   9篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   17篇
  2012年   10篇
  2011年   8篇
  2010年   11篇
  2009年   10篇
  2008年   4篇
  2007年   4篇
  2006年   9篇
  2005年   17篇
  2004年   6篇
  2003年   6篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1993年   1篇
  1990年   1篇
  1970年   1篇
排序方式: 共有149条查询结果,搜索用时 62 毫秒
1.
Human presence and activity in tropical forest is thought to exert top-down regulation over the various ‘green-world’ pathways of plant-based foodwebs. However, these effects have never been explored for the ‘brown-world’ pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species'' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species'' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function.  相似文献   
2.
Filifactor alocis is a gram positive anaerobe that is emerging as an important periodontal pathogen. In the oral cavity F. alocis colonizes polymicrobial biofilm communities; however, little is known regarding the nature of the interactions between F. alocis and other oral biofilm bacteria. Here we investigate the community interactions of two strains of F. alocis with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, organisms with differing pathogenic potential in the oral cavity. In an in vitro community development model, S. gordonii was antagonistic to the accumulation of F. alocis into a dual species community. In contrast, F. nucleatum and the type strain of F. alocis formed a synergistic partnership. Accumulation of a low passage isolate of F. alocis was also enhanced by F. nucleatum. In three species communities of S. gordonii, F. nucleatum and F. alocis, the antagonistic effects of S. gordonii superseded the synergistic effects of F. nucleatum toward F. alocis. The interaction between A. actinomycetemcomitans and F. alocis was strain specific and A. actinomycetemcomitans could either stimulate F. alocis accumulation or have no effect depending on the strain. P. gingivalis and F. alocis formed heterotypic communities with the amount of P. gingivalis greater than in the absence of F. alocis. However, while P. gingivalis benefited from the relationship, levels of F. alocis in the dual species community were lower compared to F. alocis alone. The inhibitory effect of P. gingivalis toward F. alocis was dependent, at least partially, on the presence of the Mfa1 fimbrial subunit. In addition, AI-2 production by P. gingivalis helped maintain levels of F. alocis. Collectively, these results show that the pattern of F. alocis colonization will be dictated by the spatial composition of microbial microenvironments, and that the organism may preferentially accumulate at sites rich in F. nucleatum.  相似文献   
3.
One limitation of almost all antiviral Quantitative Structure–Activity Relationships (QSAR) models is that they predict the biological activity of drugs against only one species of virus. Consequently, the development of multi-tasking QSAR models (mt-QSAR) to predict drugs activity against different species of virus is of the major vitally important. These mt-QSARs offer also a good opportunity to construct drug–drug Complex Networks (CNs) that can be used to explore large and complex drug-viral species databases. It is known that in very large CNs we can use the Giant Component (GC) as a representative sub-set of nodes (drugs) and but the drug–drug similarity function selected may strongly determines the final network obtained. In the three previous works of the present series we reported mt-QSAR models to predict the antimicrobial activity against different fungi [Gonzalez-Diaz, H.; Prado-Prado, F. J.; Santana, L.; Uriarte, E. Bioorg. Med. Chem. 2006, 14, 5973], bacteria [Prado-Prado, F. J.; Gonzalez-Diaz, H.; Santana, L.; Uriarte E. Bioorg. Med. Chem. 2007, 15, 897] or parasite species [Prado-Prado, F.J.; González-Díaz, H.; Martinez de la Vega, O.; Ubeira, F.M.; Chou K.C. Bioorg. Med. Chem. 2008, 16, 5871]. However, including these works, we do not found any report of mt-QSAR models for antivirals drug, or a comparative study of the different GC extracted from drug–drug CNs based on different similarity functions. In this work, we used Linear Discriminant Analysis (LDA) to fit a mt-QSAR model that classify 600 drugs as active or non-active against the 41 different tested species of virus. The model correctly classifies 143 of 169 active compounds (specificity = 84.62%) and 119 of 139 non-active compounds (sensitivity = 85.61%) and presents overall training accuracy of 85.1% (262 of 308 cases). Validation of the model was carried out by means of external predicting series, classifying the model 466 of 514, 90.7% of compounds. In order to illustrate the performance of the model in practice, we develop a virtual screening recognizing the model as active 92.7%, 102 of 110 antivirus compounds. These compounds were never use in training or predicting series. Next, we obtained and compared the topology of the CNs and their respective GCs based on Euclidean, Manhattan, Chebychey, Pearson and other similarity measures. The GC of the Manhattan network showed the more interesting features for drug–drug similarity search. We also give the procedure for the construction of Back-Projection Maps for the contribution of each drug sub-structure to the antiviral activity against different species.  相似文献   
4.
Variations in prosome length and width, dry weight and condition factor of female Acartia clausi copepods were studied at three salinities (35, 34 and 33 psu) in the euhaline region of two estuaries (Bilbao and Urdaibai) of the Basque coast, with different level of anthropogenic impact. Effect of the environmental variables upon the morphology of A. clausi females on a small geographic scale is discussed. In general, biometric variables showed no significant differences between the two estuaries, but dry weight and condition factor were significantly higher in the estuary of Urdaibai at 35 and 34 psu, whilst at 33 psu they were higher in Bilbao. Body dimensions decreased significantly with decreasing salinity in both estuaries, however, no similar trends were observed for dry weight and condition factor. Temperature appeared the main variable to account size variations, but once eliminated seasonal effect of the temperature body size was related with oxygen concentration in the estuary of Bilbao and with salinity in Urdaibai. This study reveals that morphological characteristics of A. clausi not are only dependent on the temperature, but also, within a limited geographical zone, on local differences in environmental variables, mainly salinity and oxygen concentration.  相似文献   
5.
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.  相似文献   
6.
General principles about the consequences of seed dispersal by animals for the structure and dynamics of plant populations and communities remain elusive. This is in part because seed deposition patterns emerge from interactions between frugivore behaviour and the distribution of food resources, both of which can vary over space and time. Here we advocate a frugivore‐centred, process‐based, synthetic approach to seed dispersal research that integrates seed dispersal ecology and animal movement across multiple spatio‐temporal scales. To guide this synthesis, we survey existing literature using paradigms from seed dispersal and animal movement. Specifically, studies are discussed with respect to five criteria: selection of focal organisms (animal or plant); measurement of animal movement; characterization of seed shadow; animal, plant and environmental factors included in the study; and scales of the study. Most studies focused on either frugivores or plants and characterized seed shadows directly by combining gut retention time with animal movement data or indirectly by conducting maternity analysis of seeds. Although organismal traits and environmental factors were often measured, they were seldom used to characterize seed shadows. Multi‐scale analyses were rare, with seed shadows mostly characterized at fine spatial scales, over single fruiting seasons, and for individual dispersers. Novel animal‐ and seed‐tracking technologies, remote environmental monitoring tools, and advances in analytical methods can enable effective implementation of a hierarchical mechanistic approach to the study of seed dispersal. This kind of mechanistic approach will provide novel insights regarding the complex interplay between the factors that modulate animal behaviour and subsequently influence seed dispersal patterns across spatial and temporal scales.  相似文献   
7.
Abstract

Members of a new class of carbonucleoside analogues (OTC, o ne t wo substituted c arbonucleosides) were synthesized and evaluated against HIV.  相似文献   
8.
Abstract

A series of o ne t wo c arbonucleoside (OTC) analogues of thymine was synthetized and their conformation was studied by AM1 theoretical calculations. The low-energy conformations of Compound 1 and 2′,3′-dideoxythymidine, showed a degree of steric congruity.  相似文献   
9.
Octopus mimus is an important cephalopod species in the coastal zone of Peru and Chile that is exposed to temperature variations from time to time due to El Niño/Southern Oscillation (ENSO) episodes when surface temperatures can reach 24 °C, 6 °C above typical temperatures in their habitat. The relationships between temperature and food availability are important factors that determine the recruitment of juveniles into the O. mimus population. The present study was to evaluate the relationship between thermoregulatory behavior and the age of paralarvae (summer population) to determine whether changes in this behavior occur during internal yolk consumption, making larvae more vulnerable to environmental temperature change. Oxygen consumption of paralarvae when 1–4 d old was determined to establish if respiration could be used to monitor the physiological changes that occur during yolk consumption. Horizontal thermal selection (17–30 °C), critical thermal maxima (CTMax), minima (CTMin), and oxygen consumption experiments were conducted with fasting paralarvae 1–4 d old at 20 °C. Preferred temperatures were dependent on the age of O. mimus paralarvae. One day old paralarvae selected a temperature 1.1 °C (23·4 °C) higher than 2 – 4 d old paralarvae (22·3 °C). The CTMax of paralarvae increased with age with values of 31·9±1.1 °C in 1-d-olds and 33·4±0.3 to 4-d-olds. CTMin also changed with age with low values in 2-d-old paralarvae (9.1±1·3 °C) and 11·9±0·9 °C in 4-d-old animals. The temperature tolerance range of paralarvae was age-dependent (TTD=difference between CTMax and CTMin) with higher values in 2 and 3 d old paralarvae (25–26 °C) as compared to 1 d old (23·1 °C) and 4 d old animals (22.7 °C). Oxygen consumption was not affected by the age of paralarvae, suggesting that mechanisms exist that compensate their metabloism until at least 4 d of age. The temperature tolerance range of a planktonic paralarvae of octopus species is presented for the first time. This range was dependent on the age of paralarvae, and so rendered the paralarvae more vunerable to a combination of high temperature and food deprivation during first days of life. Results in the present study provide evidence that O. mimus could be under ecological pressure if a climate change causes increased or decreased temperatures into their distribution range.  相似文献   
10.
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species‐specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model‐data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号