首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3084篇
  免费   176篇
  国内免费   2篇
  2022年   11篇
  2021年   35篇
  2020年   20篇
  2019年   31篇
  2018年   53篇
  2017年   42篇
  2016年   71篇
  2015年   123篇
  2014年   135篇
  2013年   215篇
  2012年   210篇
  2011年   215篇
  2010年   156篇
  2009年   114篇
  2008年   204篇
  2007年   190篇
  2006年   183篇
  2005年   208篇
  2004年   201篇
  2003年   188篇
  2002年   182篇
  2001年   31篇
  2000年   23篇
  1999年   33篇
  1998年   39篇
  1997年   24篇
  1996年   28篇
  1995年   18篇
  1994年   21篇
  1993年   21篇
  1992年   22篇
  1991年   15篇
  1990年   12篇
  1989年   11篇
  1988年   13篇
  1987年   5篇
  1986年   11篇
  1985年   14篇
  1984年   22篇
  1983年   13篇
  1982年   20篇
  1981年   13篇
  1980年   11篇
  1979年   8篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1971年   3篇
排序方式: 共有3262条查询结果,搜索用时 15 毫秒
1.
The unique capabilities of EPR spin trapping of nitric oxide based on a ferrous-dithiocarbamate spin trap have been demonstrated in a study verifying the source of the nitrogen and oxygen atoms in nitric oxide produced from activated macrophages. Spin trapping experiments were performed during nitric oxide generation from activated mouse peritoneal macrophages using the ferrous complex of N-methyl D-glucam-ine dithiocarbamate as a spin trap. When 15N-substituted arginine was given to the activated macrophages in the presence of the spin trap, a characteristic EPR spectrum of the nitric oxide spin adduct was obtained, which indicates the presence of the l5N atom in the nitric oxide molecule. The hyperfine splitting (hfs) constant of the l5N nucleus was 17.6 gauss. When l7O-containing dioxygen (55%) was supplied to the medium, an EPR spectrum consistent with the “O-substituted nitric oxide spin adduct was observed in the composite spectrum. The hfs of “O was estimated to be 2.5 gauss. The l4NO spin adduct observed after prolonged incubation in the medium which contains [l5N]L-arginine as the only extracellular source of arginine demonstrates that arginine is recycled through its metabolite in activated macrophages.  相似文献   
2.
3.
When p-fluorophenylalanine (FPA) was added to influenza virus RI/5+-infected cells 4 hr after infection, virus-specific proteins were synthesized but infectious progeny virus was not produced. In these cells, synthesis of viral RNA was strongly inhibited and nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to untreated cells in which NP antigen was distributed throughout the whole cell. The intracellular location and migration of NP were examined by isotope labeling followed by fractionation of infected cells. In untreated cells, a large portion of the NP was present in the cytoplasm and most of it was detected in the form of ribonucleoprotein (RNP). In contrast, in FPA-treated cells little viral RNP was detectable and NP was present predominantly in the nucleus in a nonassembled, soluble form. When FPA was removed from the culture, synthesis of viral RNA was soon restored and a large amount of viral RNP appeared in the cytoplasm; this was followed by the production of infectious virus. The results of the experiments suggest that the NP synthesized in the presence of FPA is not assembled into viral RNP because of the lack of available RNA, and such NP migrates readily into the nucleus and accumulates there.  相似文献   
4.
The submandibular gland (SMG) develops through the epithelial-mesenchymal interaction mediated by many growth/differentiation factors including activin and BMPs, which are synthesized as inactive precursors and activated by subtilisin-like proprotein convertases (SPC) following cleavage at their R-X-K/R-R site. Here, we found that Dec-RVKR-CMK, a potent inhibitor of SPC, inhibited the branching morphogenesis of the rat embryonic SMG, and caused low expression of a water channel AQP5, in an organ culture system. Dec-RVKR-CMK also decreased the expression of PACE4, a SPC member, but not furin, another SPC member, suggesting the involvement of PACE4 in the SMG development. Heparin, which is known to translocate PACE4 in the extracellular matrix into the medium, and an antibody specific for the catalytic domain of PACE4, both reduced the branching morphogenesis and AQP5 expression in the SMG. The inhibitory effects of Dec-RVKR-CMK were partially rescued by the addition of recombinant BMP2, whose precursor is one of the candidate substrates for PACE4 in vivo. Further, the suppression of PACE4 expression by siRNAs resulted in decreased expression of AQP5 and inhibition of the branching morphogenesis in the present organ culture system. These observations suggest that PACE4 regulates the SMG development via the activation of some growth/differentiation factors.  相似文献   
5.
When the streptococcal preparation OK-432 was intraperitoneally injected for the treatment of carcinomatous peritonitis, antitumor polymorphonuclear leukocytes (PMNs) accumulated in the peritoneal cavity. We examined the mechanism of this PMN accumulation using an in vivo system in rats. FUT-175, EDTA and K76 inhibited C5a generation by OK-432 in vitro, but EGTA, prednisolone and inhibitors of arachidonic acid cascade did not. In in vivo experiments, EDTA, FUT-175, antirat C3 serum and K76 reduced the accumulation of PMNs onto filter membranes, when these reagents were reacted with OK-432 for 3 h through filter membranes placed on the turned rat peritoneum. EGTA failed to inhibit PMN accumulation. Prednisolone, indomethacin, OKY046 and AA861 inhibited PMN accumulation in a dose-dependent manner. These inhibitions of PMN accumulation were confirmed by histological examination. It was concluded that complement-derived chemotactic factor C5a generated by OK-432 induced PMN accumulation in association with chemotactic arachidonic acid metabolites.  相似文献   
6.
7.
In several vascular inflammatory reactions (i.e. immunity and thrombosis) inflammatory mediators lead to the activation of vascular endothelial cells (EC). To date, a number of functional molecules induced on the surface of activated-EC have been identified. We report here that Globotetraosylceramide (Gb4), a glycosphingolipid expressed in EC, is a novel inducible molecule on EC activated by TNF-α. The cell surface expression of Gb4 is increased in a time-dependent manner under TNF-α stimulation, which shows distinct expression kinetics of major proteins induced by TNF-α on EC. MALDI-TOF-MS analysis revealed that the enhanced Gb4 predominantly contains C24:0 fatty acid in the ceramide moiety. Isolated caveolae/lipid raft-enriched detergent insoluble membrane domains in activated-EC predominantly contain this molecular species of Gb4. Gb4 containing C16:0 fatty acid in the ceramide moiety, which is known to constitute the major species of Gb4 in plasma, is also found as a major molecular species in EC. These observations indicate that Gb4, especially with very long fatty acid, is enhanced in EC during its inflammatory reaction, and suggest the potential utility of Gb4 as a biomarker for monitoring inflammation status of EC involving its related diseases.  相似文献   
8.
Monoclonal nonspecific suppressor factor (MNSF), a lymphokine produced by murine T cell hybridoma, possesses pleiotrophic antigen-nonspecific suppressive functions. A cDNA clone encoding MNSF-beta, an isoform of the MNSF, has been isolated and characterized. MNSF-beta cDNA encodes a fusion protein consisting of a ubiquitin-like segment (Ubi-L) and ribosomal protein S30. Ubi-L appears to be cleaved from the ribosomal protein and released extracellularly in association with T cell receptor-like polypeptide. In the current study we have characterized the biochemical nature of the Ubi-L receptor on D.10 G4.1, a murine T helper clone type 2. Biotinylated Ubi-L bound preferentially to concanavalin A-stimulated but not to unstimulated D.10 cells. Detergent-extracted membrane proteins were applied to an immobilized Ubi-L column. SDS-polyacrylamide gel electrophoresis of eluted fraction revealed a band of Mr = 82,000. Biotinylated Ubi-L specifically recognized this band, confirming that the 82-kDa protein is the Ubi-L receptor. A complex of Mr = 90,000 was visualized by immunoprecipitation of 125I-Ubi-L cross-linked to the purified receptor followed by SDS-polyacrylamide gel electrophoresis and autoradiography. In addition, a 105-kDa protein was coimmunoprecipitated by anti-Ubi-L receptor (82-kDa polypeptide) antibody, indicative of the association of this protein with the Ubi-L receptor complex. Amino acid sequence analysis of the 82-kDa polypeptide revealed that the Ubi-L receptor may be a member of a cytokine receptor family.  相似文献   
9.
Virus infection, such as hepatitis B virus (HBV), occasionally causes endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is counteractive machinery to ER stress, and the failure of UPR to cope with ER stress results in cell death. Mechanisms that regulate the balance between ER stress and UPR are poorly understood. Type 1 and type 2 interferons have been implicated in hepatic flares during chronic HBV infection. Here, we examined the interplay between ER stress, UPR, and IFNs using transgenic mice that express hepatitis B surface antigen (HBsAg) (HBs-Tg mice) and humanized-liver chimeric mice infected with HBV. IFNα causes severe and moderate liver injury in HBs-Tg mice and HBV infected chimeric mice, respectively. The degree of liver injury is directly correlated with HBsAg levels in the liver, and reduction of HBsAg in the transgenic mice alleviates IFNα mediated liver injury. Analyses of total gene expression and UPR biomarkers’ protein expression in the liver revealed that UPR is induced in HBs-Tg mice and HBV infected chimeric mice, indicating that HBsAg accumulation causes ER stress. Notably, IFNα administration transiently suppressed UPR biomarkers before liver injury without affecting intrahepatic HBsAg levels. Furthermore, UPR upregulation by glucose-regulated protein 78 (GRP78) suppression or low dose tunicamycin alleviated IFNα mediated liver injury. These results suggest that IFNα induces ER stress-associated cell death by reducing UPR. IFNγ uses the same mechanism to exert cytotoxicity to HBsAg accumulating hepatocytes. Collectively, our data reveal a previously unknown mechanism of IFN-mediated cell death. This study also identifies UPR as a potential target for regulating ER stress-associated cell death.  相似文献   
10.
Bacteriophages (or phages) play major roles in the evolution of bacterial pathogens via horizontal gene transfer. Multiple phages are often integrated in a host chromosome as prophages, not only carrying various novel virulence-related genetic determinants into host bacteria but also providing various possibilities for prophage-prophage interactions in bacterial cells. In particular, Escherichia coli strains such as Shiga toxin (Stx)-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) strains have acquired more than 10 prophages (up to 21 prophages), many of which encode type III secretion system (T3SS) effector gene clusters. In these strains, some prophages are present at a single locus in tandem, which is usually interpreted as the integration of phages that use the same attachment (att) sequence. Here, we present phages integrating into T3SS effector gene cluster-associated loci in prophages, which are widely distributed in STEC and EPEC. Some of the phages integrated into prophages are Stx-encoding phages (Stx phages) and have induced the duplication of Stx phages in a single cell. The identified attB sequences in prophage genomes are apparently derived from host chromosomes. In addition, two or three different attB sequences are present in some prophages, which results in the generation of prophage clusters in various complex configurations. These phages integrating into prophages represent a medically and biologically important type of inter-phage interaction that promotes the accumulation of T3SS effector genes in STEC and EPEC, the duplication of Stx phages in STEC, and the conversion of EPEC to STEC and that may be distributed in other types of E. coli strains as well as other prophage-rich bacterial species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号