首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   4篇
  2021年   1篇
  2018年   2篇
  2015年   4篇
  2014年   3篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有23条查询结果,搜索用时 429 毫秒
1.
An expression vector constructed from genes of Pichia pastoris was applied for heterologous gene expression in Saccharomyces cerevisiae. Recombinant hepatitis B surface antigen was synthesized by cloning hepatitis B virus ‘S’ gene under the control of glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter of Pichia pastoris in Saccharomyces cerevisiae. Hepatitis B surface antigen was constitutively expressed, was stable and exhibited ∼20–22 nm particle formation. Stability and absence of toxicity to the host with the expression vector indicates the expression system can be applied for large-scale production.  相似文献   
2.
Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development.  相似文献   
3.
Citrus tristeza virus: survival at the edge of the movement continuum   总被引:1,自引:0,他引:1  
Systemic invasion of plants by viruses is thought to involve two processes: cell-to-cell movement between adjacent cells and long-distance movement that allows the virus to rapidly move through sieve elements and unload at the growing parts of the plant. There is a continuum of proportions of these processes that determines the degrees of systemic infection of different plants by different viruses. We examined the systemic distribution of Citrus tristeza virus (CTV) in citrus species with a range of susceptibilities. By using a "pure" culture of CTV from a cDNA clone and green fluorescent protein-labeled virus we show that both cell-to-cell and long-distance movement are unusually limited, and the degree of limitation varies depending on the citrus host. In the more-susceptible hosts CTV infected only a small portion of phloem-associated cells, and moreover, the number of infection sites in less-susceptible citrus species was substantially decreased further, indicating that long-distance movement was reduced in those hosts. Analysis of infection foci in the two most differential citrus species, Citrus macrophylla and sour orange, revealed that in the more-susceptible host the infection foci were composed of a cluster of multiple cells, while in the less-susceptible host infection foci were usually single cells, suggesting that essentially no cell-to-cell movement occurred in the latter host. Thus, CTV in sour orange represents a pattern of systemic infection in which the virus appears to function with only the long-distance movement mechanism, yet is able to survive in nature.  相似文献   
4.
Understanding the genetics underlying host range differences among plant virus strains can provide valuable insights into viral gene functions and virus-host interactions. In this study, we examined viral determinants and mechanisms of differential infection of Zea mays inbred line SDp2 by Wheat streak mosaic virus (WSMV) isolates. WSMV isolates Sidney 81 (WSMV-S81) and Type (WSMV-T) share 98.7% polyprotein sequence identity but differentially infect SDp2: WSMV-S81 induces a systemic infection, but WSMV-T does not. Coinoculation and sequential inoculation of SDp2 with WSMV-T and/or WSMV-S81 did not affect systemic infection by WSMV-S81, suggesting that WSMV-T does not induce a restrictive defense response but that virus-encoded proteins may be involved in differential infection of SDp2. The viral determinant responsible for strain-specific host range was mapped to the N terminus of coat protein (CP) by systematic exchanges of WSMV-S81 sequences with those of WSMV-T and by reciprocal exchanges of CP or CP codons 1 to 74. Green fluorescent protein (GFP)-tagged WSMV-S81 with CP or CP residues 1 to 74 from WSMV-T produced similar numbers of infection foci and genomic RNAs and formed virions in inoculated leaves as those produced with WSMV-S81, indicating that failure to infect SDp2 systemically is not due to defects in replication, cell-to-cell movement, or virion assembly. However, these GFP-tagged hybrids showed profound defects in long-distance transport of virus through the phloem. Furthermore, we found that four of the five differing amino acids in the N terminus of CP between the WSMV-S81 and WSMV-T isolates were collectively involved in systemic infection of SDp2. Taken together, these results demonstrate that the N-terminal region of tritimoviral CP functions in host- and strain-specific long-distance movement.  相似文献   
5.
A protease-producing bacterium was isolated from slaughterhouse waste samples, Hyderabad, India. It was related to Bacillus cereus on the basis of 16S rRNA gene sequencing and biochemical properties. The protease was purified to homogeneity using ammonium sulfate precipitation, and ion exchange chromatography with a fold purification of 1.8 and a recovery of 49%. The enzyme had a relative molecular weight of 28 kDa, pH and temperature optima for this protease were 10 and 60 °C. The activity was stable between a pH range of 7.0 and 12.0. The activity was inhibited by EDTA and enhanced (four-fold) by Cu2+ ions indicating the presence of metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents and anionic surfactants. The enzyme also showed stability in the presence of organic solvents.  相似文献   
6.
Artemisinin, a sesquiterpene lactone containing an endoperoxide bridge, isolated from Artemisia annua L. is effective against both drug resistant and cerebral malaria causing strains of Plasmodium falciparum. The relative low yields of artemisinin in plants are a serious limitation to the commercialization of the drug. An alternative approach by microbial bioconversion of arteannuin B to artemisinin was carried out by Microbacterium trichotecenolyticum isolated from soil. Crude enzyme extract from cell free extracts were capable of microbial bioconversion of arteannuin B, the immediate precursor of artemisinin, to artemisinin. Attempts have been made to partially purify the proteins involved in bioconversion by ion exchange chromatography. Detection of artemisinin was done by thin layer chromatography, and quantified by HPLC.  相似文献   
7.
8.
Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. This finding raises the question of whether specialized functions have evolved in some cases. This analysis establishes that the core DNA replication machinery is highly conserved across plant species and displays many features in common with other eukaryotes and some characteristics that are unique to plants.  相似文献   
9.
10.
A protease producing bacterial culture ('S7') was isolated from slaughterhouse waste samples, Hyderabad, India. It was related to Streptomyces sp. on the basis of biochemical properties and 16S rRNA gene sequencing. Purification of the protease present in the culture medium supernatant on sephacryl S-100 indicated that it contains a keratinase with 67% recovery, 2.5-fold purification and an estimated molecular mass of approximately 44,000 Da. Keratinase showed an optimal activity at 45 degrees C and pH 11. Keratinase activity increased substantially in presence of Ca(2+) and was inhibited in presence of PMSF and EDTA identifying it as a serine metalloprotease. Stability in the presence of detergents, surfactants and solvents make this keratinase extremely useful for biotechnological process involving keratin hydrolysis or in the leather industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号