首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11187篇
  免费   1070篇
  国内免费   1654篇
  2024年   12篇
  2023年   176篇
  2022年   279篇
  2021年   668篇
  2020年   512篇
  2019年   554篇
  2018年   559篇
  2017年   418篇
  2016年   536篇
  2015年   858篇
  2014年   905篇
  2013年   984篇
  2012年   1176篇
  2011年   1041篇
  2010年   587篇
  2009年   590篇
  2008年   611篇
  2007年   558篇
  2006年   525篇
  2005年   424篇
  2004年   315篇
  2003年   246篇
  2002年   224篇
  2001年   129篇
  2000年   127篇
  1999年   126篇
  1998年   85篇
  1997年   73篇
  1996年   69篇
  1995年   59篇
  1994年   52篇
  1993年   38篇
  1992年   64篇
  1991年   49篇
  1990年   40篇
  1989年   31篇
  1988年   28篇
  1987年   28篇
  1986年   22篇
  1985年   23篇
  1984年   13篇
  1983年   11篇
  1982年   13篇
  1981年   7篇
  1978年   8篇
  1977年   8篇
  1973年   5篇
  1972年   4篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Two A strain influenza viruses, A/Hong Kong/123/77 (A/HK/123/77) (H1N1) and A/Queensland/6/72 (A/Qld/6/72) (H3N2), and the two cold-adapted reassortants which possess the surface antigens of these strains (CR35 and CR6, respectively) were tested for their ability both to induce primary cytotoxic T-cell (Tc cell) responses in mice and to sensitize mice for a second Tc cell response when challenged with a distantly related A strain virus, A/Shearwater/72 (H6N5). After intranasal inoculation, A/Qld/6/72 replicated to higher titers in the lung (1 to 2 log10 50% egg infective doses) than did A/HK/123/77 or either of the reassortants. A/Qld/6/72 induced higher Tc cell responses in the lung than did CR6, and both were more effective than either A/HK/123/77 or CR35 in this respect. When similar doses (10 or 10(3) hemagglutinin units) of each virus were injected intravenously into mice and the spleens were tested for Tc cell activity 6 days later, both A/Qld/6/72 and CR6 were ca. 100-fold better at inducing a primary Tc cell response than A/HK/123/77 or CR35. In contrast, the H1N1 and H3N2 viruses gave rather similar anti-hemagglutinin antibody titers (after intravenous injection) and delayed-type hypersensitivity reactions (after subcutaneous injection). If mice were primed with a low dose of these viruses (10(4) 50% egg infective doses intranasally), A/Qld/6/72 and CR6 were more effective than A/HK/123/77 or CR35 at sensitizing for a secondary Tc cell response when challenged with A/Shearwater/72, but if larger doses were given either intranasally (10(6) 50% egg infective doses) or intravenously (10 to 10(3) hemagglutinin units), all viruses sensitized the mice equally well, despite the fact the A/Shearwater/72 gives a poor primary Tc cell response in mice. Thus, the viral glycoprotein antigens can be important in determining the immunogenicity of the virus and, particularly, the class I antigen-restricted Tc cell response of the host.  相似文献   
2.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
3.
4.
5.
Amphiphilic cationic peptides mediate cell adhesion to plastic surfaces   总被引:2,自引:0,他引:2  
Four amphiphilic peptides, each with net charges of +2 or more at neutrality and molecular weights under 4 kilodaltons, were found to mediate the adhesion of normal rat kidney fibroblasts to polystyrene surfaces. Two of these peptides, a model for calcitonin (peptide 1, MCT) and melittin (peptide 2, MEL), form amphiphilic alpha-helical structures at aqueous/nonpolar interfaces. The other two, a luteinizing hormone-releasing hormone model (peptide 3, LHM) and a platelet factor model (peptide 4, MPF) form beta-strand structures in amphiphilic environments. Although it contains only 10 residues, LHM mediated adhesion to surfaces coated with solutions containing as little as 10 pmoles/ml of peptide. All four of these peptides were capable of forming monolayers at air-buffer interfaces with collapse pressures greater than 20 dynes/cm. None of these four peptides contains the tetrapeptide sequence Arg-Gly-Asp-Ser, which has been associated with fibronectin-mediated cell adhesion. Ten polypeptides that also lacked the sequence Arg-Gly-Asp-Ser but were nonamphiphilic and/or had net charges less than +2 at neutrality were all incapable of mediating cell adhesion (Pierschbacher and Ruoslahti, 1984). The morphologies of NRK cells spread on polystyrene coated with peptide LHM resemble the morphologies on fibronectin-coated surfaces, whereas cells spread on surfaces coated with MCT or MEL exhibit strikingly different morphologies. The adhesiveness of MCT, MEL, LHM, and MPF implies that many amphiphilic cationic peptides could prove useful as well defined adhesive substrata for cell culture and for studies of the mechanism of cell adhesion.  相似文献   
6.
Liu  Rui-zhu  Li  Tao  Zhao  Guo-qing 《Neurochemical research》2019,44(5):1090-1100
Neurochemical Research - Inhalation anesthetic isoflurane may cause an increased risk of cognitive impairment. Previous studies have indicated that this cognitive decline is associated with...  相似文献   
7.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
8.
We tried to establish compatible carbon content models of individual trees for a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation from Fujian province in southeast China. In general, compatibility requires that the sum of components equal the whole tree, meaning that the sum of percentages calculated from component equations should equal 100%. Thus, we used multiple approaches to simulate carbon content in boles, branches, foliage leaves, roots and the whole individual trees. The approaches included (i) single optimal fitting (SOF), (ii) nonlinear adjustment in proportion (NAP) and (iii) nonlinear seemingly unrelated regression (NSUR). These approaches were used in combination with variables relating diameter at breast height (D) and tree height (H), such as D, D2H, DH and D&H (where D&H means two separate variables in bivariate model). Power, exponential and polynomial functions were tested as well as a new general function model was proposed by this study. Weighted least squares regression models were employed to eliminate heteroscedasticity. Model performances were evaluated by using mean residuals, residual variance, mean square error and the determination coefficient. The results indicated that models with two dimensional variables (DH, D2H and D&H) were always superior to those with a single variable (D). The D&H variable combination was found to be the most useful predictor. Of all the approaches, SOF could establish a single optimal model separately, but there were deviations in estimating results due to existing incompatibilities, while NAP and NSUR could ensure predictions compatibility. Simultaneously, we found that the new general model had better accuracy than others. In conclusion, we recommend that the new general model be used to estimate carbon content for Chinese fir and considered for other vegetation types as well.  相似文献   
9.
10.
Myocardial contractile dysfunction in sepsis is associated with the increased morbidity and mortality. Although the underlying mechanisms of the cardiac depression have not been fully elucidated, an exaggerated inflammatory response is believed to be responsible. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome is an intracellular platform that is involved in the maturation and release of interleukin (IL)-1β. The aim of the present study is to evaluate whether sepsis activates NLRP3 inflammasome/caspase-1/IL-1β pathway in cardiac fibroblasts (CFs) and whether this cytokine can subsequently impact the function of cardiomyocytes (cardiac fibroblast-myocyte cross-talk). We show that treatment of CFs with lipopolysaccharide (LPS) induces upregulation of NLRP3, activation of caspase-1, as well as the maturation (activation) and release of IL-1β. In addition, the genetic (small interfering ribonucleic acid [siRNA]) and pharmacological (glyburide) inhibition of the NLRP3 inflammasome in CFs can block this signaling pathway. Furthermore, the inhibition of the NLRP3 inflammasome in cardiac fibroblasts ameliorated the ability of LPS-chalenged CFs to impact cardiomyocyte function as assessed by intracellular cyclic adenosine monophosphate (cAMP) responses in cardiomyocytes. Salient features of this the NLP3 inflammasome/ caspase-1 pathway were confirmed in in vivo models of endotoxemia/sepsis. We found that inhibition of the NLRP3 inflammasome attenuated myocardial dysfunction in mice with LPS and increased the survival rate in mice with feces-induced peritonitis. Our results indicate that the activation of the NLRP3 inflammasome in cardiac fibroblasts is pivotal in the induction of myocardial dysfunction in sepsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号