首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   58篇
  国内免费   3篇
  2021年   13篇
  2020年   3篇
  2019年   9篇
  2018年   7篇
  2017年   11篇
  2016年   13篇
  2015年   18篇
  2014年   28篇
  2013年   25篇
  2012年   53篇
  2011年   59篇
  2010年   39篇
  2009年   21篇
  2008年   20篇
  2007年   23篇
  2006年   25篇
  2005年   14篇
  2004年   15篇
  2003年   11篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   9篇
  1998年   9篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   2篇
  1979年   4篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1953年   1篇
  1951年   1篇
排序方式: 共有533条查询结果,搜索用时 15 毫秒
1.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
2.
Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots   总被引:10,自引:0,他引:10  
The subunit organization of the tonoplast H+-pumping ATPase from oat roots (Avena sativa L. var. Lang) was investigated. Tonoplast vesicles were treated with low ionic strength solutions (0.1 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer or 0.1 mM Na EDTA), carbonate, or a chaotropic reagent (KI), and then centrifuged to give a soluble fraction and a pellet. Treatments with low ionic strength solutions or KI resulted in 70-80% reduction in the membrane-associated ATPase activity, but did not affect the K+-stimulated pyrophosphatase activity. Polypeptides of 72, 60, and 41 kDa were solubilized from tonoplast vesicles by these wash treatments. These polypeptides reacted with polyclonal antibodies against the holoenzyme of tonoplast ATPase (anti-ATPase) and copurified with the tonoplast ATPase activity during gel filtration chromatography (Sepharose CL-6B). Mono-specific antibody against the 72- or 60-kDa polypeptide reacted with the solubilized 72- or 60-kDa polypeptide, respectively. However, the N,N-[14C]dicyclohexylcarbodiimide-binding 16-kDa polypeptide and a 13-kDa polypeptide that also reacted with anti-ATPase and copurified with the tonoplast ATPase activity during gel filtration remained in the pellets after the wash treatments. We conclude that the 72- and 60-kDa polypeptides appear to be peripheral subunits of the tonoplast ATPase and that the 16-kDa polypeptide is probably embedded in the membrane bilayer. Additional subunits of the ATPase complex may include a 41-kDa (peripheral) and a 13-kDa (integral) polypeptide. Based on these results, a working model of the tonoplast ATPase analogous to the F1F0-ATPase is proposed.  相似文献   
3.
Summary Southern Corn Leaf Blight is caused by a toxin produced by a virulent form ofHelminthosporium maydis (Race T). The toxin has been shown to uncouple oxidative phosphorylation and dissipate Ca2+ gradients in mitochondria isolated from susceptible, but not resistant, corn. The possibility that the toxin acted by increasing the permeability of membranes to ions was tested using a planar bilayer membrane system. Addition of the toxin to the bilayer system, under voltage-clamp conditions, resulted in stepwise increases in current across the phospholipid bilayer, a response characteristic for channel formers. Single-channel conductance in 1m KCl is 27 pS which corresponds to 1.7×107 ions sec–1 channel–1 at 100 mV applied potential. The toxin channels are: (i) fairly uniform in conductance, (ii) ideally selective for K+ over Cl, and (iii) most conductive to H+. The channel showed the following selectivity for alkali metal cations: Rb+>K+>Cs+>Na+>Li+ (169731) based on the most frequently observed conductance in 1m chloride salts. The toxin showed no voltage dependence over the range of –100 to +100 mV. Channel formation was also a property of a synthetic analog (Cmpd IV) of the toxin. The ability of the native toxin to form channels may be a mode of toxin action on mitochondrial membranes from susceptible corn.  相似文献   
4.
H+-pumping adenosinetriphosphatases (ATPases, EC 3.6.1.3) were demonstrated in sealed microsomal vesicles of tobacco callus. Quinacrine fluorescence quenching was induced specifically by MgATP and stimulated by EGTA and Cl?. Fluorescence quenching reflected a relative measure of pH gradient formation (inside acid), as it could be reversed by gramicidin (an H+/cation conductor) or 10 mM NH4Cl (an uncoupler). H+ pumping was inhibited by tributyltin (an ATPase inhibitor) and sodium vanadate, but it was insensitive to oligomycin or fusicoccin. The vanadate concentration required to inhibit pH gradient formation was similar to that needed to inhibit KCl-stimulated Mg2+-ATPase activity and generation of a membrane potential (measured by ATP-dependent 35SCN? uptake). About 45% of all three activities (ATPase, pH gradient, membrane potential generation) were vanadate-insensitive, supporting the idea that non-mitochondrial membranes of plants have at least two types of electrogenic H+ pump.A vanadate-insensitive, H+-pumping ATPase previously shown by methylamine accumulation was characterized to be anion-sensitive and possibly enriched in vacuolar membranes (Churchill, K.A. and Sze, H. (1983) Plant Physiol. 71, 610–617). Yet, pH gradient formation determined by quinacrine fluorescence quenching was decreased by monovalent cations with a sequence K+, Rb+, Na+ > Cs+,Li+> choline, bisTris-propane. Since K+ stimulated ATPase activity more than Bistris-propane, K+ appeared to collapse formation of the pH gradient by an H+/K+ countertransport. The sensitivity to vanadate and K+ provides evidence that the plasma-membrane ATPase is an electrogenic H+ pump.  相似文献   
5.
The specific binding of [3H]-corticosterone, [3H]-17 beta-estradiol, [3H]-testosterone, and [3H]-progesterone to synaptic plasma membrane (SPM) prepared from rat brain has been characterized. The dissociation constant is estimated as on the order of 1 x 10(-7) M for corticosterone and 1 x 10(-8) M for the other three steroids. In a competition experiment, none of the 3H-steroids was displaced by the other steroids at 500-fold excess, indicating the presence of specific binding sites on the membrane for each type of steroid. Moreover, pre-incubation of the SPM with phospholipase A2 or phospholipase C totally destroys the membrane binding of corticosterone and testosterone, but the binding of estradiol and progesterone remains intact. Since the SPM prepared from brain tissue is derived from many different neuronal cell types, it is possible that the membrane binding sites for glucocorticoids and for gonadal steroids are present in different neurons.  相似文献   
6.
Summary We have examined the effect of Na+,K+-ATPase on 3H-triamcinolone acetonide binding capacity of cytosol glucocorticoid receptors from rat brain and liver. Preincubation of the brain or liver cytosol with Na+,K+-ATPase (10 units/ml) at 30 °C resulted in a rapid loss of specific 3H-triamcinolone acetonide binding, with a half-life of approximately 7 min. The ATPase effect could be prevented by the addition of 10–5 M ouabain, or substantially reduced by the omission of Na+,K+ or Mg+2. The cytosol receptor bound with 3H-triamcinolone acetonide was totally resistant to the inactivation by the ATPase. Since there is some evidence that ATP may bind to glucocorticoid receptor, our findings indicate that an ATP-receptor complex may be essential for steroid binding. The effects of the ATPase in the inactivation of the receptor are very similar to those of alkaline phosphatase reported by others. This raises doubts about the proposal based on the phosphatase inactivation that the cytosol glucocorticoid receptor may be phosphorylated.  相似文献   
7.
Heven Sze  F. M. Ashton 《Phytochemistry》1971,10(12):2935-2942
The dipeptidase activity of an unpurified soluble extract of the cotyledons of Cucurbita maxima Duch. var. Hubbard remained unchanged during the first 2 days of germination and then increased at a rapid rate during the next 3 days. The dipeptidase activity of two of three lots of seeds required the presence of the embryo axis for maximal dipeptidase activity, whereas the third lot was uninfluenced by the embryo axis. This discrepancy was possibly due to genetic differences. In those seeds which required the presence of the embryo axis for maximal dipeptidase activity, the cytokinin benzyladenine could replace the embryonic axis. When the protein synthesis inhibitor cycloheximide was added to the seeds at the beginning of germination, it inhibited dipeptidase activity of the cotyledons from 26 to 55 per cent, depending of the basis of calculation, at 5 days. When the cycloheximide was added to 3-day-old seedling the inhibition of dipeptidase activity in the cotyledons was almost immediate. The relative hydrolysis of -leucylglycine and glycylglycine were compared after temperature inactivation and purification; the results showed that more than one enzyme was responsible for the dipeptidase activity. The presence of a dialysable dipeptidase inhibitor(s) was demonstrated. Relatively high dipeptidase activity was also found in the roots and shoots.  相似文献   
8.
Synaptic plasma membranes (SPM) from the brain are known to have specific binding sites for several steroid hormones, but the mechanisms of membrane transduction of steroid signals is not understood. In this study, corticosterone was found to prevent temperature-dependent dissociation of endogenous calmodlin (CaM) from highly purified SPM from rat cerebral cortex. The steroid stabilizes Ca2+-dependent membrane binding of endogenous CaM (78% of total CaM), whereas Ca2+-independent binding of CaM (the other 22%) is not affected. The stabilization of membrane binding of endogenous CaM by corticosterone is concentration-dependent, with the maximal effect occurring at steroid concentration of 1 M. The EC50 is estimated as 130 nM, which is almost identical to the Kd of specific binding of the steroid to SPM (120 nM) reported previously. The effect in stabilizing membrane binding of CaM is specific to corticosterone and other glucocorticoids (cortisol, dexamethasone and triamcinolone); gonadal steroids (17-estradiol, progesterone and testosterone) are ineffective. Furthermore, corticosterone administration in vivo (2 mg/kg, i.p.) produced a rapid increase of CaM content in SPM, occurring within 5 min after steroid injection and persisting for at least 20 min. Since CaM mediates a variety of biochemical processes in synaptic membranes, we hypothesize that the effect of glucocorticoids in promoting membrane binding of CaM may lead to a cascade of consequences in synaptic membrane function.Special issue dedicated to Dr. Sidney Ochs.  相似文献   
9.
Binding of [125I]calmodulin was characterized in highly purified synaptic plasma membrane (SPM) prepared from rat brain. By Scatchard analysis, the Ca2+-dependent membrane binding of [125I]calmodulin was found to have a Bmax of 284 pmol/mg protein and an apparent affinity with a Kd of 131 nM. Kinetic analysis indicates that at 37°C, the dissociation of [125I]calmodulinmembrane complexes follows first-order reaction and consists of two components: a dissociation constant (k) of 3.7×10–1 min–1 and a half-time (t1/2) of 1.8 min for the fast component, and a k of 4.8×10–2 min–1 and a t1/2 of 14.5 min for the slow component. At 0°C, substantial dissociation still occurred, with a k of 4.5×10–2 min–1 and a t1/2 of 15.3 min for the fast component, and a k of 5.5×10–3 min–1 and a t1/2 of 125.5 min for the slow component. These data on binding affinity and dissociation kinetics are consistent with the notion that SPM can readily and rapidly associated and dissociate calmodulin. In Arrhenius analysis of temperature effects, [125I]calmodulin binding to SPM exhibits a biphasic function, with the transition temperature (Td) estimated to be 23.8°C, suggesting that binding is influenced by lipid phase transition of the membrane. The binding of [125I]calmodulin to the synaptic membrane was found to be increased by corticosterone (10–7–10–6 M), a steroid hormone, and decreased by ethanol (50–200 mM), a centrally acting drug. Our data on the characteristics of calmodulin binding to the SPM provide groundwork for future studies on physiological and pharmacological regulation of calmodulin translocation to and from the plasma membrane in synaptic terminals.Abbreviations used CaM calmodulin - SPM synaptic plasma membrane - ATPase adenosine triphosphatase - Tris tris(hydroxymethyl)aminomethane - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - SDS sodium dodecyl sulfate - TFP trifluoperazine - Kd dissociation constant - Bmax maximum binding - k first-order rate constant - t1/2 half-time - Td transition temperature  相似文献   
10.
Fraction 4 (F4), a protein fraction isolated from aged garlic extract, enhanced cytotoxicity of human peripheral blood lymphocytes (PBL) against both naturalkiller (NK)-sensitive K562 and NK-resistant M14 cell lines. Although F4 treatment alone increased cytotoxicity, the effect was more remarkable when F4 was administered together with suboptimal doses of interleukin-2 (IL-2); combination treatment of 5 g/ml F4 plus 10 U/ml IL-2 for 72 h generated lymphokine-activated killer activity equivalent to that produced by 100 U/ml IL-2 alone against M14. F4 enhanced IL-2-induced proliferation and IL-2 receptor (Tac) expression of PBL without significant increase of IL-2 production. The enhancement of cytotoxicity both by F4 alone and by F4 plus IL-2 was abolished by anti-IL-2 antibody. F4 also enhanced concanavalin-A(ConA)-induced proliferation of PBL. Radiolabeled-ConA binding assays revealed that F4 treatment greatly augmented the affinity and slightly increased the number of ConA binding sites in PBL. F4 also enhanced ConA-induced IL-2 receptor (Tac) expression and IL-2 production of PBL. Anti-IL-2 antibody inhibited the effect of F4 on ConA-induced proliferation. These data suggest that IL-2 is involved in augmentative effects of F4. Our results indicate that F4 is a very efficient immunopotentiator and may be used for immunotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号