首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15659篇
  免费   1445篇
  国内免费   6篇
  2023年   40篇
  2021年   157篇
  2020年   134篇
  2019年   139篇
  2018年   182篇
  2017年   185篇
  2016年   358篇
  2015年   590篇
  2014年   669篇
  2013年   787篇
  2012年   1115篇
  2011年   1199篇
  2010年   781篇
  2009年   712篇
  2008年   944篇
  2007年   1051篇
  2006年   893篇
  2005年   903篇
  2004年   936篇
  2003年   879篇
  2002年   853篇
  2001年   182篇
  2000年   139篇
  1999年   212篇
  1998年   235篇
  1997年   148篇
  1996年   142篇
  1995年   159篇
  1994年   160篇
  1993年   156篇
  1992年   147篇
  1991年   107篇
  1990年   116篇
  1989年   106篇
  1988年   119篇
  1987年   96篇
  1986年   97篇
  1985年   107篇
  1984年   137篇
  1983年   99篇
  1982年   123篇
  1981年   117篇
  1980年   102篇
  1979年   62篇
  1978年   68篇
  1977年   66篇
  1976年   65篇
  1975年   46篇
  1974年   57篇
  1973年   40篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach.  相似文献   
2.
3.
Summary PEG has been activated using epoxy-oxirane, epichlorohydrin and periodate based reactions. The coupling to activated PEG of several protein ligands of different sizes was investigated. Glutathione, trypsin inhibitor, Protein A and anti-BSA have been bound to PEG and used to increase the selectivity of protein separation in aqueous two-phase systems.  相似文献   
4.
5.
The expanding nasal septal cartilage is believed to create a force that powers midfacial growth. In addition, the nasal septum is postulated to act as a mechanical strut that prevents the structural collapse of the face under masticatory loads. Both roles imply that the septum is subject to complex biomechanical loads during growth and mastication. The purpose of this study was to measure the mechanical properties of the nasal septum to determine (1) whether the cartilage is mechanically capable of playing an active role in midfacial growth and in maintaining facial structural integrity and (2) if regional variation in mechanical properties is present that could support any of the postulated loading regimens. Porcine septal samples were loaded along the horizontal or vertical axes in compression and tension, using different loading rates that approximate the in vivo situation. Samples were loaded in random order to predefined strain points (2–10%) and strain was held for 30 or 120 seconds while relaxation stress was measured. Subsequently, samples were loaded until failure. Stiffness, relaxation stress and ultimate stress and strain were recorded. Results showed that the septum was stiffer, stronger and displayed a greater drop in relaxation stress in compression compared to tension. Under compression, the septum displayed non-linear behavior with greater stiffness and stress relaxation under faster loading rates and higher strain levels. Under tension, stiffness was not affected by strain level. Although regional variation was present, it did not strongly support any of the suggested loading patterns. Overall, results suggest that the septum might be mechanically capable of playing an active role in midfacial growth as evidenced by increased compressive residual stress with decreased loading rates. However, the low stiffness of the septum compared to surrounding bone does not support a strut role. The relatively low stiffness combined with high stress relaxation under fast loading rates suggests that the nasal septum is a stress dampener, helping to absorb and dissipate loads generated during mastication.  相似文献   
6.
7.
8.
9.
Spasticity is a common impairment found in patients that have been diagnosed with a stroke. Little is known about the pathophysiology of spasticity at the level of the brain. This retrospective study was performed to identify an association between the area of the brain affected by an ischemic stroke and the presence of acute spasticity. Physical and occupational therapy assessments from all patients (n?=?441) that had suffered a stroke and were admitted into a local hospital over a 4-year period were screened for inclusion in this study. Subjects that fit the inclusion criteria were grouped according to the presence (n?=?42) or absence (n?=?129) of acute spasticity by the Modified Ashworth Scale score given during the hospital admission assessment. Magnetic resonance images from 20 subjects in the spasticity group and 52 from the control group were then compared using lesion density plots and voxel-based lesion–symptom mapping. An association of acute spasticity with the gray matter regions of the insula, basal ganglia, and thalamus was found in this study. White matter tracts including the pontine crossing tract, corticospinal tract, internal capsule, corona radiata, external capsule, and the superior fronto-occipital fasciculus were also found to be significantly associated with acute spasticity. This is the first study to describe an association between a region of the brain affected by an infarct and the presence of acute spasticity. Understanding the regions associated with acute spasticity will aid in understanding the pathophysiology of this musculoskeletal impairment at the level of the brain.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号