首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
排序方式: 共有42条查询结果,搜索用时 238 毫秒
1.
The exoskeleton of most invertebrate larval forms is made of chitin, which is a linear polysaccharide of β (1→4)-linked N-acetylglucosamine (GlcNAc) residues. These larval forms offer extensive body surface for bacterial attachment and colonization. In nature, degradation of chitin involves a cascade of processes brought about by chitinases produced by specific bacteria in the marine environment. Microbial decomposition of larval carcasses serves as an alternate mechanism for nutrient regeneration, elemental cycling and microbial production. The present study was undertaken to assess the influence of chitinase enzyme on the degradation of the nauplii of barnacle, Balanus amphitrite. The survival and abundance of bacteria during the degradation process under different experimental conditions was monitored. To the best of our knowledge, no such study is conducted to understand the degradation of larval exoskeleton using chitinase and its influence on bacteria. An increase in the chitinase activity with increase in temperature was observed. Scanning electron micrographs of chitinase treated nauplii showed scars on the surface of the barnacle nauplii initially and further disruption of the exoskeleton was observed with the increase in the treatment time. Bacterial abundance of the chitinase treated nauplii increased with the increase in enzyme concentration. Pathogenic bacteria such as Vibrio cholerae, V. alginolyticus, V. parahaemolyticus which were initially associated with the exoskeleton were absent after chitinase treatment, however, Bacillus spp. dominated subsequent to chitinase treatment and this might have important implications to marine ecosystem functioning.  相似文献   
2.
Cyclophilins, which bind to immunosuppressant cyclosporin A (CsA), are ubiquitous proteins and constitute a multigene family in higher organisms. Several members of this family are reported to catalyze cis-trans isomerisation of the peptidyl-prolyl bond, which is a rate limiting step in protein folding. The physiological role of these proteins in plants, with few exceptions, is still a matter of speculation. Although Arabidopsis genome is predicted to contain 35 cyclophilin genes, biochemical characterization, imperative for understanding their cellular function(s), has been carried only for few of the members. The present study reports the biochemical characterization of an Arabidopsis cyclophilin, AtCyp19-3, which demonstrated that this protein is enzymatically active and possesses peptidyl-prolyl cis-trans isomerase (PPIase) activity that is specifically inhibited by CsA with an inhibition constant (Ki) of 18.75 nM. The PPIase activity of AtCyp19-3 was also sensitive to Cu2+, which covalently reacts with the sulfhydryl groups, implying redox regulation. Further, using calmodulin (CaM) gel overlay assays it was demonstrated that in vitro interaction of AtCyp19-3 with CaM is Ca2+-dependent, and CaM-binding domain is localized to 35–70 amino acid residues in the N-terminus. Bimolecular fluorescence complementation assays showed that AtCyp19-3 interacts with CaM in vivo also, thus, validating the in vitro observations. However, the PPIase activity of the Arabidopsis cyclophilin was not affected by CaM. The implications of these findings are discussed in the context of Ca2+ signaling and cyclophilin activity in Arabidopsis.  相似文献   
3.
4.
5.
FliZ is an activator of class 2 flagellar gene expression in Salmonella enterica. To understand its role in flagellar assembly, we investigated how FliZ affects gene expression dynamics. We demonstrate that FliZ participates in a positive-feedback loop that induces a kinetic switch in class 2 gene expression.  相似文献   
6.
7.

Background

There is no convincing data on the trends of hospitalizations, mortality, cost, and demographic variations associated with inpatient admissions for gastric cancer in the USA. The aim of this study was to use a national database of US hospitals to evaluate the trends associated with gastric cancer.

Methods

We analyzed the National Inpatient Sample (NIS) database for all patients in whom gastric cancer (ICD-9 code: 151.0, 151.1, 151.2, 151.3, 151.4, 151.5, 151.6, 151.8, 151.9) was the principal discharge diagnosis during the period, 2003–2014. The NIS is the largest publicly available all-payer inpatient care database in the US. It contains data from approximately eight million hospital stays each year. The statistical significance of the difference in the number of hospital discharges, length of stay, and hospital costs over the study period was determined by regression analysis.

Results

In 2003, there were 23,921 admissions with a principal discharge diagnosis of gastric cancer as compared to 21,540 in 2014 (P?<?0.01). The mean length of stay for gastric cancer decreased by 17% between 2003 and 2014 from 10.9?days to 8.95?days (P?<?0.01). However, during this period, the mean hospital charges increased significantly by 21% from $ 75,341 per patient in 2003 to $ 91,385 per patient in 2014 (P?<?0.001). There was a more significant reduction in mortality over a period of 11?years from 2428 (10.15%) in 2003 to 1345 (6.24%) in 2014 (P?<?0.01). The aggregate charges (i.e., “national bill”) for gastric cancer increased significantly from 1.79 bn $ to 1. 96 bn $ (P?<?0.001), despite decrease in hospitalization (inflation adjusted).

Conclusion

Although the number of inpatient admissions for gastric cancer have decreased over the past decade, the healthcare burden and cost related to it has increased significantly. Inpatient mortality is decreasing which is consistent with overall decrease in gastric cancer-related deaths. Cost increase associated with gastric cancer contributed significantly to the national healthcare bill.
  相似文献   
8.
Cellular energetics is thought to have played a key role in dictating all major evolutionary transitions in the history of life on Earth. However, how exactly cellular energetics and metabolism come together to shape evolutionary paths is not well understood. In particular, when an organism is evolved in different energy environments, what are the phenomenological differences in the chosen evolutionary trajectories, is a question that is not well understood. In this context, starting from an Escherichia coli K‐12 strain, we evolve the bacterium in five different carbon environments—glucose, arabinose, xylose, rhamnose and a mixture of these four sugars (in a predefined ratio) for approximately 2,000 generations. At the end of the adaptation period, we quantify and compare the growth dynamics of the strains in a variety of environments. The evolved strains show no specialized adaptation towards growth in the carbon medium in which they were evolved. Rather, in all environments, the evolved strains exhibited a reduced lag phase and an increased growth rate. Sequencing results reveal that these dynamical properties are not introduced via mutations in the precise loci associated with utilization of the sugar in which the bacterium evolved. These phenotypic changes are rather likely introduced via mutations elsewhere on the genome. Data from our experiments indicate that evolution in a defined environment does not alter hierarchy in mixed‐sugar utilization in bacteria.  相似文献   
9.
Dextromethorphan, a noncompetitive blocker of N-methyl-D- aspartate (NMDA) type of glutamate receptor, at 7.5-75 mg/kg, ip did not induce oral stereotypies or catalepsy and did not antagonize apomorphine stereotypy in rats. These results indicate that dextromethorphan at 7.5-75 mg/kg does not stimulate or block postsynaptic striatal D2 and D1 dopamine (DA) receptors. Pretreatment with 15 and 30 mg/kg dextromethorphan potentiated dexamphetamine stereotypy and antagonised haloperidol catalepsy. Pretreatment with 45, 60 and 75 mg/kg dextromethorphan, which release 5-hydroxytryptamine (5-HT), however, antagonised dexamphetamine stereotypy and potentiated haloperidol catalepsy. Apomorphine stereotypy was not potentiated or antagonised by pretreatment with 7.5-75 mg/kg dextromethorphan. This respectively indicates that at 7.5-75 mg/kg dextromethorphan does not exert facilitatory or inhibitory effect at or beyond the postsynaptic striatal D2 and D1 DA receptors. The results are explained on the basis of dextromethorphan (15-75 mg/kg)-induced blockade of NMDA receptors in striatum and substantia nigra pars compacta. Dextromethorphan at 15 and 30 mg/kg, by blocking NMDA receptors, activates nigrostriatal dopaminergic neurons and thereby potentiates dexampetamine stereotypy and antagonizes haloperidol catalepsy. Dextromethorphan at 45, 60 and 75 mg/kg, by blocking NMDA receptors, releases 5-HT and through the released 5-HT exerts an inhibitory influence on the nigrostriatal dopaminergic neurons with resultant antagonism of dexampetamine stereotypy and potentiation of haloperidol catalepsy.  相似文献   
10.
Electrokinetic techniques are a staple of microscale applications because of their unique ability to perform a variety of fluidic and electrophoretic processes in simple, compact systems with no moving parts. Isotachophoresis (ITP) is a simple and very robust electrokinetic technique that can achieve million-fold preconcentration and efficient separation and extraction based on ionic mobility. For example, we have demonstrated the application of ITP to separation and sensitive detection of unlabeled ionic molecules (e.g. toxins, DNA, rRNA, miRNA) with little or no sample preparation and to extraction and purification of nucleic acids from complex matrices including cell culture, urine, and blood. ITP achieves focusing and separation using an applied electric field and two buffers within a fluidic channel system. For anionic analytes, the leading electrolyte (LE) buffer is chosen such that its anions have higher effective electrophoretic mobility than the anions of the trailing electrolyte (TE) buffer (Effective mobility describes the observable drift velocity of an ion and takes into account the ionization state of the ion, as described in detail by Persat et al.). After establishing an interface between the TE and LE, an electric field is applied such that LE ions move away from the region occupied by TE ions. Sample ions of intermediate effective mobility race ahead of TE ions but cannot overtake LE ions, and so they focus at the LE-TE interface (hereafter called the "ITP interface"). Further, the TE and LE form regions of respectively low and high conductivity, which establish a steep electric field gradient at the ITP interface. This field gradient preconcentrates sample species as they focus. Proper choice of TE and LE results in focusing and purification of target species from other non-focused species and, eventually, separation and segregation of sample species. We here review the physical principles underlying ITP and discuss two standard modes of operation: "peak" and "plateau" modes. In peak mode, relatively dilute sample ions focus together within overlapping narrow peaks at the ITP interface. In plateau mode, more abundant sample ions reach a steady-state concentration and segregate into adjoining plateau-like zones ordered by their effective mobility. Peak and plateau modes arise out of the same underlying physics, but represent distinct regimes differentiated by the initial analyte concentration and/or the amount of time allotted for sample accumulation. We first describe in detail a model peak mode experiment and then demonstrate a peak mode assay for the extraction of nucleic acids from E. coli cell culture. We conclude by presenting a plateau mode assay, where we use a non-focusing tracer (NFT) species to visualize the separation and perform quantitation of amino acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号