首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2711篇
  免费   208篇
  2021年   30篇
  2020年   19篇
  2019年   37篇
  2018年   29篇
  2017年   32篇
  2016年   48篇
  2015年   96篇
  2014年   124篇
  2013年   130篇
  2012年   189篇
  2011年   153篇
  2010年   117篇
  2009年   105篇
  2008年   167篇
  2007年   132篇
  2006年   161篇
  2005年   141篇
  2004年   140篇
  2003年   124篇
  2002年   140篇
  2001年   51篇
  2000年   37篇
  1999年   42篇
  1998年   48篇
  1997年   27篇
  1996年   21篇
  1995年   22篇
  1994年   17篇
  1993年   26篇
  1992年   36篇
  1991年   30篇
  1990年   30篇
  1989年   36篇
  1988年   22篇
  1987年   25篇
  1986年   22篇
  1985年   26篇
  1984年   25篇
  1983年   22篇
  1982年   25篇
  1981年   23篇
  1980年   21篇
  1979年   23篇
  1978年   16篇
  1977年   15篇
  1976年   10篇
  1974年   12篇
  1973年   12篇
  1971年   8篇
  1969年   9篇
排序方式: 共有2919条查询结果,搜索用时 46 毫秒
1.
Proteins associated with the centrosome play key roles in mitotic progression in mammalian cells. The activity of Cdk1-opposing phosphatases at the centrosome must be inhibited during early mitosis to prevent premature dephosphorylation of Cdh1—an activator of the ubiquitin ligase anaphase-promoting complex/cyclosome—and the consequent premature degradation of mitotic activators. In this paper, we show that reversible oxidative inactivation of centrosome-bound protein phosphatases such as Cdc14B by H2O2 is likely responsible for this inhibition. The intracellular concentration of H2O2 increases as the cell cycle progresses. Whereas the centrosome is shielded from H2O2 through its association with the H2O2-eliminating enzyme peroxiredoxin I (PrxI) during interphase, the centrosome-associated PrxI is selectively inactivated through phosphorylation by Cdk1 during early mitosis, thereby exposing the centrosome to H2O2 and facilitating inactivation of centrosome-bound phosphatases. Dephosphorylation of PrxI by okadaic acid–sensitive phosphatases during late mitosis again shields the centrosome from H2O2 and thereby allows the reactivation of Cdk1-opposing phosphatases at the organelle.  相似文献   
2.
FoxP3+ regulatory CD4 T cells (Tregs) help to maintain the delicate balance between pathogen-specific immunity and immune-mediated pathology. Prior studies suggest that Tregs are induced by P. falciparum both in vivo and in vitro; however, the factors influencing Treg homeostasis during acute and chronic infections, and their role in malaria immunopathogenesis, remain unclear. We assessed the frequency and phenotype of Tregs in well-characterized cohorts of children residing in a region of high malaria endemicity in Uganda. We found that both the frequency and absolute numbers of FoxP3+ Tregs in peripheral blood declined markedly with increasing prior malaria incidence. Longitudinal measurements confirmed that this decline occurred only among highly malaria-exposed children. The decline of Tregs from peripheral blood was accompanied by reduced in vitro induction of Tregs by parasite antigen and decreased expression of TNFR2 on Tregs among children who had intense prior exposure to malaria. While Treg frequencies were not associated with protection from malaria, there was a trend toward reduced risk of symptomatic malaria once infected with P. falciparum among children with lower Treg frequencies. These data demonstrate that chronic malaria exposure results in altered Treg homeostasis, which may impact the development of antimalarial immunity in naturally exposed populations.  相似文献   
3.
We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.  相似文献   
4.
5.
Quantal melatonin suppression by exposure to low intensity light in man   总被引:1,自引:0,他引:1  
Plasma melatonin concentrations were examined following three relatively low intensities of artificial light. Six normal, healthy control subjects were all exposed to (a) 200 lux, (b) 400 lux and (c) 600 lux for a three hour duration from midnight to 0300 h. Blood was also collected on a control night where light intensity was less than 10 lux throughout. Significant suppression of melatonin was observed following light of 400 lux and 600 lux intensity when compared to the control night (p less than 0.05; Mann-Whitney U-test). 200 lux light did not produce a statistically significant melatonin suppression when compared with control samples. Each light intensity produced its own individual maximal melatonin suppression by one hour of exposure. Increased duration of exposure to the light had no further influence on melatonin plasma concentrations. These data confirm a dose response relationship between light and melatonin suppression, and indicate that there is no reciprocal relationship between the effects of light intensity and the duration of exposure on maximal melatonin suppression in man.  相似文献   
6.
Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys11- and Lys48-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys11 and Lys48 rather than oxidative damage per se.  相似文献   
7.
The complete amino acid sequence of human heart (R)-3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) has been deduced from the nucleotide sequence of cDNA clones. This mitochondrial enzyme has an absolute and specific requirement of phosphatidylcholine for enzymic activity (allosteric activator) and is an important prototype of lipid-requiring enzymes. Despite extensive studies, the primary sequence has not been available and is now reported. The mature form of the enzyme consists of 297 amino acids (predicted M(r) of 33,117), does not appear to contain any transmembrane helices, and is homologous with the family of short-chain alcohol dehydrogenases (SC-ADH) (Persson, B., Krook, M., and J?rnvall, H. (1991) Eur. J. Biochem. 200, 537-543) (30% residue identity with human 17 beta-hydroxysteroid dehydrogenase). The first two-thirds of the enzyme includes both putative coenzyme binding and active site conserved residues and exhibits a predicted secondary structure motif (alternating alpha-helices and beta-sheet) characteristic of SC-ADH. Bovine heart peptide sequences (174 residues in nine sequences determined by microsequencing) have extensive homology (89% identical residues) with the deduced human heart sequence. The C-terminal third (Asn-194 to Arg-297) shows little sequence homology with the SC-ADH and likely contains elements that determine the substrate specificity for the enzyme including the phospholipid (phosphatidylcholine) binding site(s). Northern blot analysis identifies a 1.3-kilobase mRNA encoding the enzyme in heart tissue.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号