首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   43篇
  2023年   4篇
  2021年   14篇
  2020年   6篇
  2019年   8篇
  2018年   5篇
  2017年   7篇
  2016年   16篇
  2015年   27篇
  2014年   38篇
  2013年   14篇
  2012年   40篇
  2011年   33篇
  2010年   27篇
  2009年   24篇
  2008年   20篇
  2007年   34篇
  2006年   32篇
  2005年   24篇
  2004年   20篇
  2003年   31篇
  2002年   22篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1984年   1篇
  1978年   1篇
  1973年   1篇
  1961年   1篇
排序方式: 共有476条查询结果,搜索用时 31 毫秒
1.
2.
3.
There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2.  相似文献   
4.
5.
6.
7.
Serine/threonine kinases secreted from rhoptry organelles constitute important virulence factors of Toxoplasma gondii. Rhoptry kinases are highly divergent and their structures and regulatory mechanism are hitherto unknown. Here, we report the X‐ray crystal structures of two related pseudokinases named ROP2 and ROP8, which differ primarily in their substrate‐binding site. ROP kinases contain a typical bilobate kinase fold and a novel N‐terminal extension that both stabilizes the N‐lobe and provides a unique means of regulation. Although ROP2 and ROP8 were catalytically inactive, they provided a template for homology modelling of the active kinase ROP18, a major virulence determinant of T. gondii. Autophosphorylation of key residues in the N‐terminal extension resulted in ROP18 activation, which in turn phosphorylated ROP2 and ROP8. Mutagenesis and mass spectrometry experiments revealed that ROP18 was maximally activated when this phosphorylated N‐terminus relieved autoinhibition resulting from extension of aliphatic side chains into the ATP‐binding pocket. This novel means of regulation governs ROP kinases implicated in parasite virulence.  相似文献   
8.
Herein, we investigated the survival roles of Fak, Src, MEK/Erk, and PI3‐K/Akt‐1 in intestinal epithelial cancer cells (HCT116, HT29, and T84), in comparison to undifferentiated and differentiated intestinal epithelial cells (IECs). We report that: (1) cancer cells display striking anoikis resistance, as opposed to undifferentiated/differentiated IECs; (2) under anoikis conditions and consequent Fak down‐activation, cancer cells nevertheless exhibit sustained Fak–Src interactions and Src/MEK/Erk activation, unlike undifferentiated/differentiated IECs; however, HCT116 and HT29 cells exhibit a PI3‐K/Akt‐1 down‐activation, as undifferentiated/differentiated IECs, whereas T84 cells do not; (3) cancer cells require MEK/Erk for survival, as differentiated (but not undifferentiated) IECs; however, T84 cells do not require Fak and HCT116 cells do not require PI3‐K/Akt‐1, in contrast to the other cells studied; (4) Src acts as a cornerstone in Fak‐mediated signaling to MEK/Erk and PI3‐K/Akt‐1 in T84 cells, as in undifferentiated IECs, whereas PI3‐K/Akt‐1 is Src‐independent in HCT116, HT29 cells, as in differentiated IECs; and (5) EGFR activity inhibition abrogates anoikis resistance in cancer cells through a loss of Fak–Src interactions and down‐activation of Src/MEK/Erk (T84, HCT116, HT29 cells) and PI3‐K/Akt‐1 (T84 cells). Hence, despite distinctions in signaling behavior not necessarily related to undifferentiated or differentiated IECs, intestinal epithelial cancer cells commonly display an EGFR‐mediated sustained activation of Src under anoikis conditions. Furthermore, such sustained Src activation confers anoikis resistance at least in part through a consequent sustenance of Fak–Src interactions and MEK/Erk activation, thus not only overriding Fak‐mediated signaling to MEK/Erk and/or PI3‐K/Akt‐1, but also the requirement of Fak and/or PI3‐K/Akt‐1 for survival. J. Cell. Biochem. 107: 639–654, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
9.
The fact that microRNAs play a role in almost all biological processes is well established, as is the importance of recombination in generating genome variability. However, the association between microRNAs and recombination remains largely unknown. In order to investigate the recombination patterns of microRNAs, we performed a comprehensive analysis of the recombination rate of human microRNAs. We observed that microRNAs that are expressed in several tissues tend to have lower recombination rates than tissue-specific microRNAs. Additionally, microRNAs that are associated with a number of diseases are also likely to have lower recombination rates. Furthermore, microRNAs with higher expression levels are found to have fewer recombination events. These findings reveal patterns in recombination rates of microRNAs that could help in understanding the function, evolution, and disease-related roles of microRNAs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号