首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   6篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   8篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   9篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   6篇
  2004年   12篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
1.
An epithelial cell line derived from the liver of a normal Buffalo rat (BRL) was transformed by Rous sarcoma virus (RSV). The RSV-transformed cells were separated into five clones (RSV-BRL1 through 5), which were morphologically different. RSV-BRL cells exhibited the following characteristics distinct from those of BRL cells: tumorigenicity, irregular cell arrangement, loose intercellular junction, growth in soft agar (anchorage-independent growth) except for RSV-BRL3 and 5, and loss of cell surface fibronectin. When BRL cells were cultured in the standard medium supplemented with the serum-free conditioned medium of RSV-BRL cells, the amount of the cell surface fibronectin decreased significantly. It was found that RSV-BRL cells secreted a proteinase capable of hydrolyzing the fibronectin, whereas BRL cells secreted hardly any of this proteinase. The fibronectin-hydrolyzing proteinase (FNase) could also hydrolyze plasma fibronectin added as an exogenous substrate. The hydrolysis of plasma fibronectin was inhibited by ethylenediamine tetraacetate, but stimulated by rho-chloromercuribenzoate and calcium ion. This indicates that FNase is a metallo-enzyme, but not a serine or thiol enzyme. In addition to the proteinase, RSV-BRL cells secreted plasminogen activator and a proteinase inhibitor which inhibited the activity of plasmin but not FNase.  相似文献   
2.
Y Noma  K Kihira  T Kuramoto  T Hoshita 《Steroids》1988,51(3-4):385-394
Metabolism of C26 bile alcohols in the bullfrog, Rana catesbeiana, was studied. [24-14C]-24-Dehydro-26-deoxy-5 beta-ranol (3 alpha,7 alpha,12 alpha-trihydroxy-27-nor-5 beta-cholestan-24-one) was chemically synthesized from [24-14C]cholic acid and incubated with bullfrog liver homogenate fortified with NADPH. 24-Dehydro-26-deoxy-5 beta-ranol was shown to be converted into both 26-deoxy-5 beta-ranol and 24-epi-26-deoxy-5 beta-ranol [(24S)- and (24R)-27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrols] in addition to 5 beta-ranol [(24R)-27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,26-pentol], which is the major bile alcohol of the bullfrog. [24-3H]-26-Deoxy-5 beta-ranol and [24-3H]-24-epi-26-deoxy-5 beta-ranol were prepared from 24-dehydro-26-deoxy-5 beta-ranol by reduction with sodium [3H] borohydride and administered respectively to two each of four bullfrogs by intraperitoneal injection. After 24 h, labeled 5 beta-ranol was isolated from the bile of the bullfrogs that received [24-3H]-26-deoxy-5 beta-ranol. In contrast little if any radioactivity could be detected in 5 beta-ranol or its 24-epimer after administration of [24-3H]-24-epi-26-deoxy-5 beta-ranol.  相似文献   
3.
The nature of cholestanetetrols present as the glucurono-conjugates in human gallbladder bile was studied. Glucurono-conjugated bile alcohols were isolated by ion exchange chromatography and, after enzymatic hydrolysis, were fractionated by reversed phase partition chromatography to give a fraction containing tetrahydroxy bile alcohols which was analyzed by gas-liquid chromatography and mass spectrometry. Along with the three previously identified bile alcohols, 5 alpha- and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha,24-tetrols, and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha,26-tetrol, three new cholestanetetrols, possessing two hydroxyl groups in the ring system and two in the side chain, were detected in the tetrahydroxy bile alcohol fraction. These new bile alcohols were identified as 5 beta-cholestane-3 alpha, 7 alpha,24,26-tetrol, 5 beta-cholestane-3 alpha, 7 alpha,25,26-tetrol, and 5 beta-cholestane-3 alpha, 7 alpha,26,27-tetrol by direct comparison of their gas-liquid chromatographic behaviors and mass spectral data with those of authentic standards prepared from chenodeoxycholic acid by partial synthesis.  相似文献   
4.
The synthesis of four stereoisomers at C-24 and C-25 of 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid is described. Pyridium chlorochromate oxidation of 3 alpha,7 alpha,12 alpha-triacetoxy-5 beta-cholan-24-ol (II) prepared from cholic acid (I) afforded 3 alpha,7 alpha,12 alpha-triacetoxy-5 beta-cholan-24-al (III) which was converted to a mixture of the four stereoisomers (IV-VII) by a Reformatsky reaction with ethyl DL-alpha-bromopropionate followed by alkaline hydrolysis. Separation of these isomers (IV-VII) was achieved by silica gel column chromatography, and subsequent reversed-phase partition column chromatography. The configurations at C-24 were elucidated by conversion of each isomer into (24R)- or (24S)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol (XII or XI) by Kolbe electric coupling, the C-24 configurations of which were determined by modified Horeau's method and 13C-nuclear magnetic resonance spectroscopy. The stereochemistries at C-25 were deduced by comparison of IV-VII with the products of the hydroboration followed by oxidation with alkaline hydrogen peroxide of (24E)-3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholest-24-en-26-oic acid (XIII).  相似文献   
5.
Bile alcohols in rat bile were analyzed by gas-liquid chromatography-mass spectrometry. Six bile alcohols were newly identified as minor constituents in addition to 5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol, major bile alcohol of rat bile. The bile alcohols newly identified were 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol, 5 alpha-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,26-pentol, 5 alpha-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol, 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25,26-pentol, and 5 beta-cholestane-3 alpha,6 beta,7 beta,25,26-pentol. The biliary bile alcohols of the rat occurred mainly as the sulfuric acid esters and, in lesser amounts, as glucuronoconjugated and unconjugated forms. The amount of total bile alcohols was about 27.9 nmol in 1 ml of bile.  相似文献   
6.
We have isolated cDNA clones encoding dihydropyrimidinase (DHPase) from human liver and its three homologues from human fetal brain. The deduced amino acid (aa) sequence of human DHPase showed 90% identity with that of rat DHPase, and the three homologues showed 57–59% aa identity with human DHPase, and 74–77% aa identity with each other. We tentatively termed these homologues human DHPase related protein (DRP)-1, DRP-2 and DRP-3. Human DRP-2 showed 98% aa identity with chicken CRMP-62 (collapsin response mediator protein of relative molecular mass of 62 kDa) which is involved in neuronal growth cone collapse. Human DRP-3 showed 94–100% aa identity with two partial peptide sequences of rat TOAD-64 (turned on after division, 64 kDa) which is specifically expressed in postmitotic neurons. Human DHPase and DRPs showed a lower degree of aa sequence identity with Bacillus stearothermophilus hydantoinase (39–42%) and Caenorhabditis elegans unc-33 (32–34%). Thus we describe a novel gene family which displays differential tissue distribution: i.e., human DHPase, in liver and kidney; human DRP-1, in brain; human DRP-2, ubiquitously expressed except for liver; human DRP-3, mainly in heart and skeletal muscle.  相似文献   
7.
In this study, eight kinds of nickel (Ni) compounds were orally administered to Wistar male rats and the distribution of each compound was investigated 24 h after the administration. The Ni compounds used in this experiment were nickel metal [Ni−M], nickel oxide (green) [NiO(G)], nickel oxide (black) [NiO(B)], nickel subsulfide [Ni3S2], nickel sulfide [NiS], nickel sulfate [NiSO4], nickel chloride [NiCl2], and nickel nitrate [Ni(NO3)2]. The solubilities of the nickel compounds in saline solution were in the following order; [Ni(NO3)2>NiCl2>NiSO4]≫[NiS>Ni3S2]>[NiO(B)>Ni−M>NiO(G)]. The Ni level in the visceral organs was higher in the rats given soluble Ni compounds; Ni(NO3)2, NiCl2, NiSO4, than that in the rats receiving other compounds. In the rats to which soluble Ni compounds were administered, 80–90% of the recovered Ni amounts in the examined organs was detected in the kidneys. On the other hand, the Ni concentration in organs administered scarcely soluble Ni compounds; NiO(B), NiO(G), and Ni−M were very low. The estimated absorbed fraction of each Ni compounds was increased with the increase of the solubility. These results suggest that the kinetic behavior of Ni compounds administered orally is closely related with the solubility of Ni compounds, and that the solubility of Ni compounds is one of the important factors for determining the health effect of Ni compounds.  相似文献   
8.
Bile salts present in gallbladder of wild and cultured red seabream, Pagrosomus major, a marine teleost were analyzed. The bile from wild red seabream was found to contain two previously unknown bile salts along with two known bile salts, taurocholate and taurochenodeoxycholate. Isolation of each bile salt was performed by column chromatography. Fast atom bombardment mass spectra of the unknown bile salts showed the molecular ions (M-H)- of m/z 544 and 528 which are shifted 30 mass units upfield compared to those (m/z 514 and 498) of taurocholate and taurochendeoxycholate, respectively; this is consistent with the presence of cysteinolic acid (mol wt 155) instead of taurine (mol wt 125). Enzymatic hydrolysis of the bile salts released cholic acid and chenodeoxycholic acid, respectively, and an amino acid that was identified as D-cysteinolic acid by direct comparison with an authentic sample. From these results, the bile salts in the bile of wild red seabream were identified as the conjugates of cholic acid and chenodeoxycholic acid with cysteinolic acid. 1H- and 13C-magnetic resonance spectra of the bile salts were also consistent with the proposed structure. The cysteinolic acid conjugates were found only in wild and not in cultured red seabream; this distinction seems to result from differences in dietary cysteinolic acid.  相似文献   
9.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1)Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5)K+ + Na+ + ATP, Na+ + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (K0.5s) were 3 mM, 0.13 mM and 4μM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i.e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)-ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 · nucleotide and EP), which all have different conformations.  相似文献   
10.
Absolute configuration at C-23 of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,23,25-pentol, one of the bile alcohols isolated from the patients with cerebrotendinous xanthomatosis, was unequivocally determined as 23S by conversion of a key intermediate, (23S)-5 beta-cholest-25-ene-3 alpha,7 alpha,12 alpha,23-tetrol to either the bile alcohol of known absolute configuration, (23R)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,23-tetrol, or the naturally occurring 23,25-pentol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号