首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  2021年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  1998年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1977年   1篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
1.
Ca2+/calmodulin- and voltage-dependent inactivation (CDI and VDI) comprise vital prototypes of Ca2+ channel modulation, rich with biological consequences. Although the events initiating CDI and VDI are known, their downstream mechanisms have eluded consensus. Competing proposals include hinged-lid occlusion of channels, selectivity filter collapse, and allosteric inhibition of the activation gate. Here, novel theory predicts that perturbations of channel activation should alter inactivation in distinctive ways, depending on which hypothesis holds true. Thus, we systematically mutate the activation gate, formed by all S6 segments within CaV1.3. These channels feature robust baseline CDI, and the resulting mutant library exhibits significant diversity of activation, CDI, and VDI. For CDI, a clear and previously unreported pattern emerges: activation-enhancing mutations proportionately weaken inactivation. This outcome substantiates an allosteric CDI mechanism. For VDI, the data implicate a “hinged lid–shield” mechanism, similar to a hinged-lid process, with a previously unrecognized feature. Namely, we detect a “shield” in CaV1.3 channels that is specialized to repel lid closure. These findings reveal long-sought downstream mechanisms of inactivation and may furnish a framework for the understanding of Ca2+ channelopathies involving S6 mutations.  相似文献   
2.
Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L) leaves (control group). All of the snails received leaves (tobacco and lettuce leaves were the only food provided) and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.  相似文献   
3.
Cell volume regulation is fundamentally important in phenomena such as cell growth, proliferation, tissue homeostasis, and embryogenesis. How the cell size is set, maintained, and changed over a cell’s lifetime is not well understood. In this work we focus on how the volume of nonexcitable tissue cells is coupled to the cell membrane electrical potential and the concentrations of membrane-permeable ions in the cell environment. Specifically, we demonstrate that a sudden cell depolarization using the whole-cell patch clamp results in a 50% increase in cell volume, whereas hyperpolarization results in a slight volume decrease. We find that cell volume can be partially controlled by changing the chloride or the sodium/potassium concentrations in the extracellular environment while maintaining a constant external osmotic pressure. Depletion of external chloride leads to a volume decrease in suspended HN31 cells. Introducing cells to a high-potassium solution causes volume increase up to 50%. Cell volume is also influenced by cortical tension: actin depolymerization leads to cell volume increase. We present an electrophysiology model of water dynamics driven by changes in membrane potential and the concentrations of permeable ions in the cells surrounding. The model quantitatively predicts that the cell volume is directly proportional to the intracellular protein content.  相似文献   
4.
We evaluated the use of fluorescent powders for tracking dispersal by the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), of Beauveria bassiana isolates from an autocontamination device. Neither of the two DayGlow powders tested (Arc Yellow and Aurora Pink) interfered with fungal germination or growth, nor did they affect survival of beetles in the laboratory, or affect virulence of the fungus. The powders persisted at least 10 days out-of-doors on dead beetles in sticky band traps, and at least 14 days on pouches inside autocontamination traps. During field trials of autocontamination traps with powder-dusted fungal pouches in southwestern Ontario, 8.0% of the 4010 beetles captured in green prism and sticky-band traps were positive for fluorescent powders. Only half (46.2–57.8%) of the powder-positive beetles actually carried viable fungal conidia, as determined by plating of beetle rinses, possibly as a result of patchy growth of fungal isolates and reduced conidia production on pouch surfaces during the 16-day trapping experiment. The presence of viable conidia (either one or both isolates) on about 10% of beetles that did not carry any visible powder particles may be an indication of horizontal transmission of the fungus by beetles that had visited the autocontamination traps.  相似文献   
5.
Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature “silent” cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity‐based pixel correlations to identify cellular‐based regions of interest (ROIs) and coincident cell activity. However, using activity‐based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell‐dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi‐automatically detect cells within developing neuronal networks that were imaged using calcium‐sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 357–374, 2016  相似文献   
6.
Tyrosine phosphorylation-dependence of caveolae-mediated endocytosis   总被引:2,自引:0,他引:2  
Caveolae are flask-shaped plasma membrane invaginations that mediate endocytosis and transcytosis of plasma macromolecules, such as albumin, insulin and low-density lipoprotein (LDL), as well as certain viruses, bacteria and bacterial toxins. Caveolae-mediated transcytosis of macromolecules is critical for maintaining vascular homeostasis by regulating the oncotic pressure gradient and tissue delivery of drugs, vitamins, lipids and ions. Entrapment of cargo within caveolae induces activation of signalling cascades leading to caveolae fission and internalization. Activation of Src tyrosine kinase is an early and essential step that triggers detachment of loaded caveolae from the plasma membrane. In this review, we examine how Src-mediated phosphorylation regulates caveolae-mediated transport by orchestrating the localization and activity of essential proteins of the endocytic machinery to regulate caveolae formation and fission.  相似文献   
7.
Plasma membrane endothelin type A (ET(A)) receptors are internalized and recycled to the plasma membrane, whereas endothelin type B (ET(B)) receptors undergo degradation and subsequent nuclear translocation. Recent studies show that G protein-coupled receptors (GPCRs) and ion transporters are also present and functional at the nuclear membranes of many cell types. Similarly to other GPCRs, ET(A) and ET(B) are present at both the plasma and nuclear membranes of several cardiovascular cell types, including human cardiac, vascular smooth muscle, endocardial endothelial, and vascular endothelial cells. The distribution and density of ET(A)Rs in the cytosol (including the cell membrane) and the nucleus (including the nuclear membranes) differ between these cell types. However, the localization and density of ET-1 and ET(B) receptors are similar in these cell types. The extracellular ET-1-induced increase in cytosolic ([Ca](c)) and nuclear ([Ca](n)) free Ca(2+) is associated with an increase of cytosolic and nuclear reactive oxygen species. The extracellular ET-1-induced increase of [Ca](c) and [Ca](n) as well as intracellular ET-1-induced increase of [Ca](n) are cell-type dependent. The type of ET-1 receptor mediating the extracellular ET-1-induced increase of [Ca](c) and [Ca](n) depends on the cell type. However, the cytosolic ET-1-induced increase of [Ca](n) does not depend on cell type. In conclusion, nuclear membranes' ET-1 receptors may play an important role in overall ET-1 action. These nuclear membrane ET-1 receptors could be targets for a new generation of antagonists.  相似文献   
8.
Encephalitozoon spp. are the primary microsporidial pathogens of humans and domesticated animals. In this experiment, we test the efficacy of 4 commercial antimicrobials against an Encephalitozoon sp. infecting a grasshopper (Romalea microptera) host. Oral treatment with fumagillin or thiabendazole significantly reduced pathogen spore counts (93% and 88% respectively), whereas spore counts of grasshoppers fed quinine produced a non-significant 53% reduction in spores, and those fed streptomycin a non-significant 29% increase in spores, compared to the control. We observed a moderate dose-response effect for thiabendazole, whereby spore count decreased as drug consumption increased. No thiabendazole-treated animals died, whereas 27% of streptomycin-treated animals died, suggesting that thiabendazole was not toxic at the doses administered. The deaths among streptomycin-treated animals may have been caused by drug toxicity, parasite burden, or both. Although fumagillin and thiabendazole significantly reduced spore counts, in no individual was the pathogen totally eliminated. Our data confirm that microsporidia are difficult to control and that fumagillin and thiabendazole are partially effective antimicrobials against this group. Our study suggests that quinine and related alkaloids should be further examined for antimicrosporidial activity, and streptomycin should be examined as a possible enhancer of microsporidiosis.  相似文献   
9.
In the present study possibility of coupling stripper to remove ammonia to the UASB reactor treating poultry litter leachate was studied to enhance the overall performance of the reactor. UASB reactor with stripper as ammonia inhibition control mechanism exhibited better performance in terms of COD reduction (96%), methane yield (0.26m(3)CH(4)/kg COD reduced), organic loading rate (OLR) (18.5kg COD m(-3)day(-1)) and Hydraulic residence time (HRT) (12h) compared to the UASB reactor without stripper (COD reduction: 92%; methane yield: 0.21m(3)CH(4)/kg COD reduced; OLR: 13.6kg CODm(-3)day(-1); HRT: 16h). The improved performance was due to the reduction of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) in the range of 75-95% and 80-95%, respectively by the use of stripper. G/L (air flow rate/poultry leachate flow rate) in the range of 60-70 and HRT in the range of 7-9min are found to be optimum parameters for the operation of the stripper.  相似文献   
10.
Albumin transcytosis, a determinant of transendothelial permeability, is mediated by the release of caveolae from the plasma membrane. We addressed the role of Src phosphorylation of the GTPase dynamin-2 in the mechanism of caveolae release and albumin transport. Studies were made in microvascular endothelial cells in which the uptake of cholera toxin subunit B, a marker of caveolae, and (125)I-albumin was used to assess caveolae-mediated endocytosis. Albumin binding to the 60-kDa cell surface albumin-binding protein, gp60, induced Src activation (phosphorylation on Tyr(416)) within 1 min and resulted in Src-dependent tyrosine phosphorylation of dynamin-2, which increased its association with caveolin-1, the caveolae scaffold protein. Expression of kinase-defective Src mutant interfered with the association between dynamin-2, which caveolin-1 and prevented the uptake of albumin. Expression of non-Src-phosphorylatable dynamin (Y231F/Y597F) resulted in reduced association with caveolin-1, and in contrast to WT-dynamin-2, the mutant failed to translocate to the caveolin-rich membrane fraction. The Y231F/Y597F dynamin-2 mutant expression also resulted in impaired albumin and cholera toxin subunit B uptake and reduced transendothelial albumin transport. Thus, Src-mediated phosphorylation of dynamin-2 is an essential requirement for scission of caveolae and the resultant transendothelial transport of albumin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号