首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13525篇
  免费   1214篇
  国内免费   12篇
  2023年   34篇
  2022年   38篇
  2021年   202篇
  2020年   142篇
  2019年   231篇
  2018年   303篇
  2017年   256篇
  2016年   474篇
  2015年   671篇
  2014年   781篇
  2013年   809篇
  2012年   1061篇
  2011年   977篇
  2010年   664篇
  2009年   582篇
  2008年   789篇
  2007年   726篇
  2006年   681篇
  2005年   645篇
  2004年   639篇
  2003年   565篇
  2002年   485篇
  2001年   383篇
  2000年   328篇
  1999年   296篇
  1998年   130篇
  1997年   123篇
  1996年   89篇
  1995年   100篇
  1994年   76篇
  1993年   58篇
  1992年   152篇
  1991年   137篇
  1990年   100篇
  1989年   93篇
  1988年   76篇
  1987年   75篇
  1986年   59篇
  1985年   72篇
  1984年   59篇
  1983年   35篇
  1982年   37篇
  1981年   34篇
  1980年   32篇
  1979年   38篇
  1978年   42篇
  1977年   32篇
  1976年   41篇
  1974年   39篇
  1973年   38篇
排序方式: 共有10000条查询结果,搜索用时 864 毫秒
1.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
2.
3.
4.
Human erythrocyte and brain acetylcholinesterase are preferentially inhibited by the P(-)-isomers of C(+/-)P(+/-)-soman. The enzymes inhibited by the P(-)-isomers behave similarly with respect to oxime-induced reactivation and aging. HI-6 is the best reactivator for C(+)P(-)-soman-inhibited acetylcholinesterases. Oxime-induced reactivation of the C(-)P(-)-soman-inhibited acetylcholinesterases is much more difficult to achieve.  相似文献   
5.
6.
We measured the electrophoretic mobility of multilamellar phospholipid vesicles, the 31P NMR spectra of both sonicated and multilamellar vesicles, and the conductance of planar bilayer membranes to study the binding of spermine and gentamicin to membranes. Spermine and gentamicin do not bind significantly to the zwitterionic lipid phosphatidylcholine. We measured the concentrations of gentamicin and spermine that reverse the charge on vesicles formed from a mixture of phosphatidylcholine and either phosphatidylserine or phosphatidylinositol. From these measurements, we determined that the intrinsic association constants of the cations with these negative lipids are all about 10 M-1. This value is orders of magnitude lower than the apparent binding constants reported in the literature by other groups because the negative electrostatic surface potential of the membranes and the resultant accumulation of these cations in the aqueous diffuse double layer adjacent to the membranes have not been explicitly considered in previous studies. Our main conclusion is that the Gouy-Chapman-Stern theory of the aqueous diffuse double layer can describe surprisingly well the interaction of gentamicin and spermine with bilayer membranes formed in a 0.1 M NaCl solution if the negative phospholipids constitute less than 50% of the membrane. Thus, the theory should be useful for describing the interactions of these cations with the bilayer component of biological membranes, which typically contain less than 50% negative lipids. For example, our results support the suggestion of Sastrasinh et al. [Sastrasinh, M., Krauss, T. C., Weinberg, J. M., & Humes, H. D. (1982) J. Pharmacol. Exp. Ther. 222, 350-358] that phosphatidylinositol is the major binding site for gentamicin in renal brush border membranes.  相似文献   
7.
8.
Transglutaminase (R-glutaminyl-peptide:amine alpha-glutamyl-yltransferase [EC 2.3.2.13]) has been purified to apparent homogeneity from extracts of rabbit liver. The enzyme is a single polypeptide chain of approximately 80 000 molecular weight containing one catalytic site per molecule. That the isolated enzyme is the rabbit counterpart of the well-characterized guinea pig liver transglutaminase is evidenced by the similarities in their amino acid compositions and in their enzymic activities toward several substrates, together with the fact that the isolated rabbit enzyme is immunologically distinct from both rabbit plasma and rabbit platelet blood coagulation factor XIII. A striking difference between the catalytic activities of the rabbit and guinea pig enzymes is the low activity of rabbit transglutaminase for hydroxylamine incorporation into benzyloxycarbonyl-L-glutaminylglycine, a reaction for which the guinea pig enzyme shows a high reactivity. This finding reveals the cause of error in an earlier report (Tyler, H.M., and Laki, K. (1967) Biochemistry 6, 3259) that rabbit liver contains little, if any, of the enzyme. Preparation of, and analytical data on, several glutamine-containing peptide derivatives used in this study are reported here.  相似文献   
9.
Compression wood (CW) contains higher quantities of β-1-4-galactan than does normal wood (NW). However, the physiological roles and ultrastructural distribution of β-1-4-galactan during CW formation are still not well understood. The present work investigated deposition of β-1-4-galactan in differentiating tracheids of Cryptomeria japonica during CW formation using an immunological probe (LM5) combined with immunomicroscopy. Our immunolabeling studies clearly showed that differences in the distribution of β-1-4-galactan between NW (and opposite wood, OW) and CW are initiated during the formation of the S1 layer. At this stage, CW was strongly labeled in the S1 layer, whereas no label was observed in the S1 layer of NW and OW. Immunogold labeling showed that β-1-4-galactan in the S1 layer of CW tracheids significantly decreased during the formation of the S2 layer. Most β-1-4-galactan labeling was present in the outer S2 region in mature CW tracheids, and was absent in the inner S2 layer that contained helical cavities in the cell wall. In addition, delignified CW tracheids showed significantly more labeling of β-1-4-galactan in the secondary cell wall, suggesting that lignin is likely to mask β-1-4-galactan epitopes. The study clearly showed that β-1-4-galactan in CW was mainly deposited in the outer portion of the secondary cell wall, indicating that its distribution may be spatially consistent with lignin distribution in CW tracheids of Cryptomeria japonica.  相似文献   
10.
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号