首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway which ensures the rapid degradation of mRNAs containing premature translation termination codons (PTCs or nonsense codons), thereby preventing the accumulation of truncated and potentially harmful proteins. In this way, the NMD pathway contributes to suppressing or exacerbating the clinical manifestations of specific human genetic disorders. Studies in model organisms have led to the identification of the effectors of the NMD pathway, and illuminated the mechanisms by which premature stops are discriminated from natural stops, so that only the former trigger rapid mRNA degradation. These studies are providing important insights that will aid the development of new treatments for at least some human genetic diseases.  相似文献
2.
Splicing of exon 6B from the beta-tropomyosin pre-mRNA is repressed in nonmuscle cells and myoblasts by a complex array of intronic elements surrounding the exon. In this study, we analyzed the proteins that mediate splicing repression of exon 6B through binding to the upstream element. We identified the polypyrimidine tract binding protein (PTB) as a component of complexes isolated from myoblasts that assemble onto the branch point region and the pyrimidine tract. In vitro splicing assays and PTB knockdown experiments by RNA interference demonstrated that PTB acts as a repressor of splicing of exon 6B. Using psoralen experiments, we showed that PTB acts at an early stage of spliceosome assembly by preventing the binding of U2 snRNA on the branch point. Using UV cross-linking and immunoprecipitation experiments with site-specific labeled RNA in PTB-depleted nuclear extracts, we found that the decrease in PTB was correlated with an increase in U2AF65. In addition, competition experiments showed that PTB is able to displace the binding of U2AF65 on the polypyrimidine tract. Our results strongly support a model whereby PTB competes with U2AF65 for binding to the polypyrimidine tract.  相似文献
3.
Messenger RNAs harboring nonsense codons (or premature translation termination codons [PTCs]) are degraded by a conserved quality-control mechanism known as nonsense-mediated mRNA decay (NMD), which prevents the accumulation of truncated and potentially harmful proteins. In Drosophila melanogaster, degradation of PTC-containing messages is initiated by endonucleolytic cleavage in the vicinity of the nonsense codon. The endonuclease responsible for this cleavage has not been identified. Here, we show that SMG6 is the long sought NMD endonuclease. First, cells expressing an SMG6 protein mutated at catalytic residues fail to degrade PTC-containing messages. Moreover, the SMG6-PIN domain can be replaced with the active PIN domain of an unrelated protein, indicating that its sole function is to provide endonuclease activity for NMD. Unexpectedly, we found that the catalytic activity of SMG6 contributes to the degradation of PTC-containing mRNAs in human cells. Thus, SMG6 is a conserved endonuclease that degrades mRNAs terminating translation prematurely in metazoa.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号