首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   30篇
  国内免费   3篇
  2021年   7篇
  2020年   10篇
  2019年   6篇
  2018年   2篇
  2017年   7篇
  2016年   13篇
  2015年   19篇
  2014年   10篇
  2013年   31篇
  2012年   19篇
  2011年   24篇
  2010年   15篇
  2009年   15篇
  2008年   17篇
  2007年   15篇
  2006年   20篇
  2005年   15篇
  2004年   18篇
  2003年   21篇
  2002年   15篇
  2001年   17篇
  2000年   15篇
  1999年   13篇
  1998年   5篇
  1996年   5篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   10篇
  1991年   11篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1974年   4篇
  1970年   2篇
  1965年   2篇
  1934年   1篇
  1929年   2篇
排序方式: 共有470条查询结果,搜索用时 22 毫秒
1.
2.
The cystine-glutamate antiporter (system xc -) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc - expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc - in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc - is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc - inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc -. Human glioma cells were chosen based on their high system xc - activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of cystine uptake and glutamate release previously reported in normal human fibroblast cells.  相似文献   
3.
The IL-4-inducing principle from Schistosoma mansoni eggs (IPSE/α-1), the major secretory product of eggs from the parasitic worm S. mansoni, efficiently triggers basophils to release the immunomodulatory key cytokine interleukin-4. Activation by IPSE/α-1 requires the presence of IgE on the basophils, but the detailed molecular mechanism underlying activation is unknown. NMR and crystallographic analysis of IPSEΔNLS, a monomeric IPSE/α-1 mutant, revealed that IPSE/α-1 is a new member of the βγ-crystallin superfamily. We demonstrate that this molecule is a general immunoglobulin-binding factor with highest affinity for IgE. NMR binding studies of IPSEΔNLS with the 180-kDa molecule IgE identified a large positively charged binding surface that includes a flexible loop, which is unique to the IPSE/α-1 crystallin fold. Mutational analysis of amino acids in the binding interface showed that residues contributing to IgE binding are important for IgE-dependent activation of basophils. As IPSE/α-1 is unable to cross-link IgE, we propose that this molecule, by taking advantage of its unique IgE-binding crystallin fold, activates basophils by a novel, cross-linking-independent mechanism.  相似文献   
4.
Despite the growing numbers of threatened species and high levels of spending on their recovery worldwide, there is surprisingly little evidence about which conservation approaches are effective in arresting or reversing threatened species declines. Using two government data sets, we examined associations between population trends for 841 nationally-threatened terrestrial species in Australia, and four measures of conservation effort: (a) how much their distribution overlaps with strictly protected areas (IUCN I–IV), (b) and other protected areas (IUCN V–VI), (c) the number of recovery activities directed at the species, and (d) numbers of natural resource conservation activities applied in areas where populations of the threatened species occur. We found that all populations of 606 (72%) species were in decline. Species with greater distributional overlap with strictly protected areas had proportionately more populations that were increasing or stable. This effect was robust to geographic range size, data quality differences and extent of protection. Measures other than strictly protected areas showed no positive associations with stable or increasing trends. Indeed, species from regions with more natural resource conservation activities were found to be more likely to be declining, consistent with differential targeting of such generalised conservation activities to highly disturbed landscapes. Major differences in trends were also found among the different jurisdictions in which species predominantly occurred, which may be related to different legislative protections against habitat destruction. Although we were not able to test causation, this research corroborates other evidence that protected areas contribute to the stabilization or recovery of threatened species, and provides little empirical support for other conservation approaches.  相似文献   
5.
6.
7.
Lignin is known to impede conversion of lignocellulose into ethanol. In this study, forage sorghum plants carrying brown midrib (bmr) mutations, which reduce lignin contents, were evaluated as bioenergy feedstocks. The near-isogenic lines evaluated were: wild type, bmr-6, bmr-12, and bmr-6 bmr-12 double mutant. The bmr-6 and bmr-12 mutations were equally efficient at reducing lignin contents (by 13% and 15%, respectively), and the effects were additive (27%) for the double mutant. Reducing lignin content was highly beneficial for improving biomass conversion yields. Sorghum biomass samples were pretreated with dilute acid and recovered solids washed and hydrolyzed with cellulase to liberate glucose. Glucose yields for the sorghum biomass were improved by 27%, 23%, and 34% for bmr-6, bmr-12, and the double mutant, respectively, compared to wild type. Sorghum biomass was also pretreated with dilute acid followed by co-treatment with cellulases and Saccharomyces cerevisiae for simultaneous saccharification and fermentation (SSF) into ethanol. Conversion of cellulose to ethanol for dilute-acid pretreated sorghum biomass was improved by 22%, 21%, and 43% for bmr-6, bmr-12, and the double mutant compared to wild type, respectively. Electron microscopy of dilute-acid treated samples showed an increased number of lignin globules in double-mutant tissues as compared to the wild-type, suggesting the lignin had become more pliable. The mutations were also effective for improving ethanol yields when the (degrained) sorghum was pretreated with dilute alkali instead of dilute acid. Following pretreatment with dilute ammonium hydroxide and SSF, ethanol conversion yields were 116 and 130 mg ethanol/g dry biomass for the double-mutant samples and 98 and 113 mg/g for the wild-type samples.  相似文献   
8.
Six novel isoflavone derivatives along with four known isoflavones were isolated from a culture of a highly nickel-resistant strain of Streptomyces mirabilis from a former uranium mining area. The structures of 7-hydroxy-3′,5′-dihydroxyisoflavone (5), 5,7-dihydroxy-3′,5′-dihydroxyisoflavone (6), 2′-hydroxy-3′-methoxygenistein (7), as well as hydroisoflavones A–C (810) were elucidated by MS and NMR analyses. Compounds 810 feature yet unprecedented types of non-aromatic, hydroxylated B rings, which result from plant isoflavone biotransformation. All new compounds display weak cytotoxic but potent antiproliferative activities. The anti-oestrogenic properties of 8 against MCF-7 human breast cancer cell line (GI50: 6 μM) is even higher than the reference compound genistein.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号