首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   11篇
  2021年   8篇
  2020年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   11篇
  2007年   6篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  1984年   2篇
  1983年   1篇
  1972年   1篇
排序方式: 共有102条查询结果,搜索用时 375 毫秒
1.
Stripe rust (Puccinia striiformis f. sp. tritici) is one of the major devastating disease which causes large reduction in wheat yield. T. monococcum is an attractive diploid species for gene discovery in wheat with smaller genome size of 5700 Mb compared to 17,300 Mb of bread wheat. An adult plant stripe rust resistance QTL QYrtm.pau-2A was mapped on chromosome 2A flanked by two SSR markers Xwmc170 and Xwmc407. In the present study, two gene based markers Pau_Ta2AL_Gene45 and Pau_Ta2AL_Gene54 developed from 2A specific ESTs were found to map close to QYrtmpau-2A to narrow down the region for candidate gene identification. Utilizing sequence information of these two markers, four BAC clones were identified from the Minimum Tiling Path of 2AL assembly and were sequenced. SSR markers were designed from these BAC sequences and mapped to chromosome 2A. A 50 Mb region of wheat chromomse 2A was identified to harbor stripe rust resistance gene of T. monococcum. Gene based markers identified in the present investigation can be used for marker assisted introgression of QYrtm.pau-2A from T. monococcum to cultivated wheat.  相似文献   
2.
Molecular Biology Reports - Stripe rust and leaf rust are among the most devastating diseases of wheat, limiting its production globally. Wheat wild relatives harbour genetic diversity for new...  相似文献   
3.
Molecular and Cellular Biochemistry - Latest strategies for cancer treatment primarily focus on the use of chemosensitizers to enhance therapeutic outcome. N-3 PUFAs have emerged as the strongest...  相似文献   
4.
Molecular Biology Reports - Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat improvement. Development and deployment of...  相似文献   
5.
6.
12-Hydroxyjasmonate, also known as tuberonic acid, was first isolated from Solanum tuberosum and was shown to have tuber-inducing properties. It is derived from the ubiquitously occurring jasmonic acid, an important signaling molecule mediating diverse developmental processes and plant defense responses. We report here that the gene AtST2a from Arabidopsis thaliana encodes a hydroxyjasmonate sulfotransferase. The recombinant AtST2a protein was found to exhibit strict specificity for 11- and 12-hydroxyjasmonate with K(m) values of 50 and 10 microm, respectively. Furthermore, 12-hydroxyjasmonate and its sulfonated derivative are shown to be naturally occurring in A. thaliana. The exogenous application of methyljasmonate to A. thaliana plants led to increased levels of both metabolites, whereas treatment with 12-hydroxyjasmonate led to increased level of 12-hydroxyjasmonate sulfate without affecting the endogenous level of jasmonic acid. AtST2a expression was found to be induced following treatment with methyljasmonate and 12-hydroxyjasmonate. In contrast, the expression of the methyljasmonate-responsive gene Thi2.1, a marker gene in plant defense responses, is not induced upon treatment with 12-hydroxyjasmonate indicating the existence of independent signaling pathways responding to jasmonic acid and 12-hydroxyjasmonic acid. Taken together, the results suggest that the hydroxylation and sulfonation reactions might be components of a pathway that inactivates excess jasmonic acid in plants. Alternatively, the function of AtST2a might be to control the biological activity of 12-hydroxyjasmonic acid.  相似文献   
7.
8.
Conidiation and lytic enzyme production by Trichoderma viride at different solids concentration of pre-treated municipal wastewater sludge was examined in a 15-L fermenter. The maximum conidia concentration (5.94 × 107 CFU mL−1 at 96 h) was obtained at 30 g L−1 suspended solids. The maximum lytic enzyme activities were achieved around 12–30 h of fermentation. Bioassay against a fungal phytopathogen, Fusarium sp. showed maximum activity in the sample drawn around 96 h of fermentation at 30 g L−1 suspended solids concentration. Entomotoxicity against spruce budworm larvae showed maximum value ≈17290 SBU μL−1 at 30 g L−1 suspended solids concentration at the end of fermentation (96 h). Plant bioassay showed dual action of T. viride, i.e., disease prevention and growth promotion. The rheological analyses of fermentation sludges showed the pseudoplastic behaviour. In order to maintain required dissolved oxygen concentration ≥30%, the agitation and aeration requirements significantly increased at 35 g L−1 compared to 30 and 25 g L−1. The oxygen uptake rate and volumetric oxygen mass transfer coefficient, kLa at 35 g L−1 did not increase in comparison to 30 g L−1 due to rheological complexity of the broth during fermentation. Thus, the successful fermentation operation of the biocontrol fungus T. viride is a rational indication of its potential for mass-scale production for agriculture and forest sector as a biocontrol agent.  相似文献   
9.
The endoplasmic reticulum (ER) is a dynamic organelle that consists of numerous regions or 'subdomains' that have discrete morphological features and functional properties. Although it is generally accepted that these subdomains differ in their protein and perhaps lipid compositions, a clear understanding of how they are assembled and maintained has not been well established. We previously demonstrated that two diacylglycerol acyltransferase enzymes (DGAT1 and DGAT2) from tung tree (Vernicia fordii) were located in different subdomains of ER, but the mechanisms responsible for protein targeting to these subdomains were not elucidated. Here we extend these studies by describing two glycerol-3-phosphate acyltransferase-like (GPAT) enzymes from tung tree, GPAT8 and GPAT9, that both colocalize with DGAT2 in the same ER subdomains. Measurement of protein-protein interactions using the split-ubiquitin assay revealed that GPAT8 interacts with itself, GPAT9 and DGAT2, but not with DGAT1. Furthermore, mutational analysis of GPAT8 revealed that the protein's first predicted hydrophobic region, which contains an amphipathic helix-like motif, is required for interaction with DGAT2 and for DGAT2-dependent colocalization in ER subdomains. Taken together, these results suggest that the regulation and organization of ER subdomains is mediated at least in part by higher-ordered, hydrophobic-domain-dependent homo- and hetero-oligomeric protein-protein interactions.  相似文献   
10.
Four yeast strains (APSS 805, APSS 806, APSS 815 and AP-18) belonging to a novel Torulaspora species were isolated from coal mine soils of Singareni in Andhra Pradesh state, India. Another strain (PBA-22) was isolated from agricultural field soil from Gujarat state, India. The vegetative cells of all these strains were round, haploid and produced asci by conjugation between independent cells or mother cell and bud, with rough ascospores, suggesting their possible relation to ascomycetous yeast genus Torulaspora. Phylogenetic analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene and Internal Transcribed Spacer (ITS) regions revealed that, among the five strains, three viz. APSS 805, APSS 806 and APSS 815 have identical sequences. The other two strains (AP-18 and PBA-22) differed from the other three strains in less than 1% nucleotide substitutions in the combined D1/D2 domain and ITS sequences, indicating that all of them (five strains) may belong to the same species. These five strains were closely related to Torulaspora globosa, but showed more than 3–7% sequence divergence from T. globosa and all other species in the genus Torulaspora in the combined sequence analysis of D1/D2 domain and ITS region of rRNA gene. In addition, these strains also showed distinct microsatellite finger-printing pattern from related species and differed in several physiological responses suggesting that these strains belong to a novel species of Torulaspora. We propose to name these strains as Torulaspora indica sp. nov., and designate APSS 805T = MTCC 9772 T = CBS 12408 T as the type strain of this novel species. The Mycobank number of the novel species is MB 563738.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号