首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   17篇
  2023年   3篇
  2022年   2篇
  2021年   10篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   8篇
  2015年   9篇
  2014年   15篇
  2013年   23篇
  2012年   27篇
  2011年   29篇
  2010年   14篇
  2009年   17篇
  2008年   8篇
  2007年   11篇
  2006年   19篇
  2005年   10篇
  2004年   14篇
  2003年   9篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
排序方式: 共有319条查询结果,搜索用时 875 毫秒
1.
2.
Protein of the tobacco mosaic virus mutant E66 has lysine replacing asparagine of the type strain, vulgare, at position 140. Thus, E66 protein should have one more positive or one less net negative charge than vulgare at pH 6 to 7. To investigate the effect of charge, a comparative study of the polymerization of E66 and vulgare proteins at pH 6.0, 6.2, 6.4, 6.6, and 6.8 at ionic strengths 0.15, 0.10, and 0.05 was made by turbidimetry. Polymerization of E66 protein always proceeded at a lower temperature than vulgare. However, the extent of polymerization was much lower in E66, especially at the higher ionic strengths. Sedimentation velocity results paralleled those from turbidity measurements in that E66 protein polymerizes at lower temperatures than vulgare; the 20 S component is more abundant in E66 protein. Osmotic pressure measurements also show that E66 protein is more polymerized than vulgare, especially at lower pH values. Hydrogen ion titrations of E66 protein were carried out from pH 8 to 5 and back to pH 8 in 0.10 m KCl at three temperatures, 4, 10, and 15 °C. These titrations were reversible when carried out slowly. The isoionic point is near pH 5; thus the charge at pH 7.5 is ?3. The reversible titration results were correlated with the aggregates present at the various pH values and temperatures, determined from the areas under the schlieren peaks in sedimentation velocity experiments. It is found that hydrogen ion binding at the three pH values is correlated with the disappearance of the smallest aggregates and is independent of the type of higher polymer formed. To investigate the effect of ionic strength and pH on the characteristic temperature corresponding to an optical density increment of 0.01 by the method used previously for vulgare, two sets of turbidity measurements were carried out. In the first one the ionic strength was changed from 0.025 to 0.15 in increments of 0.025 at pH 6.0 and 6.4. In the other set, the ionic strength was kept constant at 0.10 and the pH changed from 5.9 to 6.7 in increments of 0.1 pH units. When the analysis of these data was carried out, ΔH1 = 30 kcal/mol was obtained. For the salting out constant a value of 1.7 was found, compared to 2.2 for vulgare, a result consistent with the fact that E66 should be less hydrophobic than vulgare. The electrical work term ΔWel also turns out to be about one-half that for vulgare, which is expected from the lower net negative charge on E66 protein.  相似文献   
3.
4.
The effect of human immunodeficiency virus (HIV) recombinant envelope glycoprotein 120 (rgp 120) on the functions of peripheral blood mononuclear cells (PBMC) in vitro was investigated. The results demonstrate that rgp 120 used at concentrations less than 1 microgram/ml has no significant effects on PBMC function in vitro. However, the addition of 1-20 micrograms/ml of rgp 120 significantly inhibits the tetanus toxoid-induced PBMC proliferative response in a dose-related manner as determined by [3H]thymidine incorporation. The data also show that rgp 120 (5 micrograms/ml) causes up to 70% reduction in the number of immunoglobulin G-secreting cells in pokeweed mitogen-stimulated PBMC cultures. Further, rgp 120 can selectively interact with the CD4a epitope of the CD4 helper cell membrane receptor. These results indicate that microgram per milliliter levels of rgp 120 can depress certain immune functions in vitro. The significance of these findings to the pathogenesis of immunodeficiency in HIV infection remains to be determined.  相似文献   
5.
Highly purified populations of large granular lymphocytes (LGL) have been shown to mediate natural killer (NK) cell activity. The mechanism of target cell killing by NK cells is as yet undefined; however, it has been postulated that such killing may involve soluble cytotoxic factors produced and secreted by NK cells. The data presented show that NK-sensitive, but not NK-resistant, tumor cell lines induce highly purified populations of human LGL to produce factors with cytotoxic and/or cytostatic activities. We have identified one of these factors as tumor necrosis factor-alpha (TNF-alpha), and have shown that production of this factor is enhanced by recombinant human interferon-gamma (rHuIFN-gamma). We have also examined the role of TNF-alpha in the cytotoxic function of NK cells. The data show that although highly purified LGL populations produce low levels of TNF-alpha, the cytotoxic/cytostatic activity of this lymphokine on tumor target cells does not correlate with the cytotoxic activity of highly purified populations of LGL on tumor target cells. Furthermore, NK cell-mediated cytotoxicity is not reliably inhibited by antibodies directed against various epitopes of recombinant human TNF-alpha and/or recombinant TNF-beta (lymphotoxin) or rHuIFN-gamma. These data show that although TNF-alpha is produced by highly purified NK-containing LGL cell populations, this factor does not appear to be responsible for NK cell cytotoxicity against classical NK target cells such as Molt-4 or K562. We suggest that NK function can be attributed to a combination of factors rather than to a single factor alone, and that at least two major phenomena are involved in LGL function: the rapid cytotoxic events which lead to the cell lysis measured in classical in vitro NK assays such as against K562; and the release of factors such as TNF-alpha with cytotoxic/cytostatic activities which would inhibit the growth of invading tumor cells in vivo.  相似文献   
6.
Holmes ribgrass virus (HRV), because of serological results, is regarded as a distantly related strain of tobacco mosaic virus (TMV). HRV protein differs substantially in amino acid sequence from TMV protein, especially in that it contains one histidine residue and three methionine residues, compared to none of either for TMV protein. Ultracentrifugation and hydrogen ion titration data on HRV protein, similar to those obtained previously for the early stage polymerization of TMV and E66 proteins, demonstrated some similarities and more distinct differences from those of the other two proteins. The major similarities are that the early polymerization of HRV protein is entropy driven and the first major polymerized product is a 20 S component, presumably a double disk or two-turn helix, as in the case of the other proteins. The major differences are that the unpolymerized HRV protein sediments at 3 S rather than at the 4 S for the others; it is presumably a dimer of the polypeptide chain. The enthalpy of polymerization per mole of A protein, delta H*, is 18,400 cal for HRV protein, compared to about 30,000 for TMV protein. One mol of H+ ion/mol HRV A protein, compared to 1.5 for TMV and E66 proteins, is bound during polymerization to the 20 S state. Contrasted with the other proteins, very little if any electrical work contribution was detected for the HRV protein. A major difference was found in hydrogen ion titration. Unpolymerized HRV protein binds hydrogen ions significantly in the unpolymerized A protein state, unlike the A proteins from the other two viruses.  相似文献   
7.
The entropy-driven polymerization of tobacco mosaic virus protein is favored by an increase in ionic strength, μ, and by a decrease in pH. The effect of ionic strength is interpreted in terms of salting-out and electrical work, a function of charge and, therefore, of pH as well as of μ. The extent of polymerization is measured in terms of a characteristic temperature, T1, corresponding to a characteristic value of the equilibrium constant, KcT1 is measured at an early stage in the polymerization process where the optical density increment from light scatter is 0.01. The theory developed encompassing both salting-out and electrical work terms relates 1T1 to μ approximately according to the equation, 1T1 = C + Bμ ? Aμ12, where C is the ratio of entropy to enthalpy, B is proportional to the salting-out constant divided by enthalpy, and Aμ12 depends upon the square of the charge and is proportional to the electrical work contribution divided by the enthalpy. Data in which μ varied from 0.025 to 0.150 at three pH values, 5.95, 6.35, and 6.50, were fitted to this equation and the parameters C, B, and A were evaluated. Experiments were also carried out at a constant μ of 0.10 at pH values in increments of 0.1 between 5.9 and 6.8. The theory predicts that, at constant μ, 1T1, corrected for the electrical work contribution, is a linear function of pH with a negative slope proportional to the number of hydrogen ions bound per protein unit during polymerization, divided by the enthalpy. The data obtained fit two straight lines with different slopes above and below pH 6.3. Independent experiments carried out by the method of Stevens and Loga show that the number of hydrogen ions bound per protein unit also differs above and below pH 6.3 and the ratio of these is the same as the ratio of the above mentioned slopes. The data, therefore, make it possible to evaluate the enthalpy to be 24.8 kcal/mol of associating A protein and, with this value, the parameters C, B, and A can be interpreted. Standard entropies range from 86 e.u. at pH 6.5 to 88.5 at pH 5.95 and the salting-out constant, KS, is 2.2 at all pH values studied. At μ = 0.10, the values of the electrical work contribution at pH 5.95, 6.35, and 6.50 are +0.298, +0.455, and +0.534 kcal/mol, respectively. Theoretical calculations from models predict values in agreement within a factor of less than two.  相似文献   
8.
A plasmid (palb3) was constructed containing the structural gene for human serum albumin driven by mouse albumin enhancer-rat albumin promoter elements. Using an asialoglycoprotein-polycation conjugate consisting of asialoorosomucoid coupled to poly-L-lysine, a soluble DNA complex was formed that was capable of targeting specifically to hepatocytes via asialoglycoprotein receptors present on these cells. Groups of Nagase analbuminemic rats were injected with complexed DNA or controls, followed by two-thirds partial hepatectomy to stimulate hepatocyte replication. Using a cDNA probe for the human albumin structural gene, hybridizable sequences were detected in analbuminemic rats treated with complex as determined by Southern blot analysis. Two weeks post-injection, the targeted DNA was found to exist primarily in plasmid form with an average copy number of 1000/diploid cell. Human albumin mRNA was detected by dot-blot hybridization with a specific oligonucleotide cDNA probe and confirmed by RNase protection assay using a vector-specific probe. Circulating human albumin was detected in the serum of palb3-treated Nagase analbuminemic rats by Western blots using an antibody specific for human serum albumin. A time course demonstrated that circulating human albumin was not detectable 24 h after injection, but became measurable at a level of 0.05 micrograms/ml within 48 h and increased in concentration to a maximum of 34 micrograms/ml by 2 weeks post-injection. This level of expression remained stable through 4 weeks after injection and partial hepatectomy.  相似文献   
9.
Summary pKM101, a plasmid R factor of the N compatibility group increases methylmethane sulfonate mutagenesis and diminishes UV-killing in recA + lex + and recA + lex strains, but not in recA lex + strains. The induction of a reclex dependent colicin is not present in lex strains carrying the pKM101 factor. These facts indicate that pKM101 acts through an error-prone DNA repair system, which is recA + dependent, but not lex + dependent.This paper is published on the occasion of Dr. C. Callerio's seventy-fifth birthday  相似文献   
10.
To determine the stage at which H+ ions are bound during the entropy-driven polymerization of tobacco mosaic virus protein, acid-base titrations were carried out at a concentration of 5 mg/ml in 0.1 m-KCl from pH 8 to pH 5.2 and back to pH 8 at 4, 10, 15 and 20 °C. The titration was always completely reversible when the addition of acid or base was so slow that the experiment required seven hours in each direction. When the titration was started at pH 7 and performed down and up twice as rapidly, a hysteresis loop, indistinguishable from one previously published, was obtained at 20 °C.Ultracentrifugation experiments were carried out at selected pH values at the four temperatures. H+ ion uptake, as determined from the reversible titration curves, is correlated with the disappearance of the 4 S component and is independent of whether the polymerized species is in a 20 S or higher state of aggregation. At pH 7, approximately 1 mole of H+ ion is bound per mole of monomer. At pH values between 6.56 and 6.05, 1.5 moles of H+ ion are bound per mole of monomer upon polymerization. At pH 6.05, 0.5 mole of H+ ion is bound before any polymerization takes place.Tobacco mosaic virus protein at 20 °C in an unbuffered 0.1 m-KCl solution at pH 7.18 at a concentration of 41 mg/ml, largely in the 20 S state, was depolymerized entirely to the 4 S state by dilution with 0.1 m-KCl adjusted to the same pH. Under these conditions, there was no pH change, indicating that no H + ions are released.These seemingly contradictory findings can be explained by assuming that the 4 S component polymerizes to form either double discs without binding H+ ions, or, alternatively, two-turn helices accompanied by the binding of H+ ions. Both double discs and two-turn helices sediment at approximately 20 S. Whether polymerization in the neighborhood of pH 7 leads to helices or discs depends upon the availability of H+ ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号