首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2351篇
  免费   251篇
  2023年   12篇
  2022年   11篇
  2021年   37篇
  2020年   36篇
  2019年   39篇
  2018年   46篇
  2017年   49篇
  2016年   61篇
  2015年   113篇
  2014年   108篇
  2013年   129篇
  2012年   199篇
  2011年   157篇
  2010年   92篇
  2009年   87篇
  2008年   146篇
  2007年   136篇
  2006年   105篇
  2005年   125篇
  2004年   123篇
  2003年   117篇
  2002年   112篇
  2001年   36篇
  2000年   13篇
  1999年   30篇
  1998年   28篇
  1997年   26篇
  1996年   11篇
  1995年   21篇
  1994年   19篇
  1993年   27篇
  1992年   21篇
  1991年   17篇
  1990年   18篇
  1989年   22篇
  1988年   12篇
  1987年   12篇
  1986年   10篇
  1985年   16篇
  1984年   16篇
  1983年   18篇
  1982年   8篇
  1981年   14篇
  1980年   12篇
  1979年   11篇
  1978年   8篇
  1977年   9篇
  1974年   10篇
  1973年   13篇
  1971年   13篇
排序方式: 共有2602条查询结果,搜索用时 15 毫秒
1.
The responses to ionizing radiation and other genotoxic environmental stresses are complex and are regulated by a number of overlapping molecular pathways. One such stress signaling pathway involves p53, which regulates the expression of over 100 genes already identified. It is also becoming increasingly apparent that the pattern of stress gene expression has some cell type specificity. It may be possible to exploit these differences in stress gene responsiveness as molecular markers through the use of a combined informatics and functional genomics approach. The techniques of microarray analysis potentially offer the opportunity to monitor changes in gene expression across the entire set of expressed genes in a cell or organism. As an initial step in the development of a functional genomics approach to stress gene analysis, we have recently demonstrated the utility of cDNA microarray hybridization to measure radiation-stress gene responses and identified a number of previously unknown radiation-regulated genes. The responses of some of these genes to DNA-damaging agents vary widely in cell lines from different tissues of origin and different genetic backgrounds. While this again highlights the importance of a cellular context to genotoxic stress responses, it also raises the prospect of expression-profiling of cell lines, tissues, and tumors. Such profiles may have a predictive value if they can define regions of ‘expression space’ that correlate with important endpoints, such as response to cancer therapy regimens, or identification of exposures to environmental toxins.  相似文献   
2.
A major complication of peritoneal dialysis is the development of peritonitis, which is associated with reduced technique and patient survival. The inflammatory response elicited by infection results in a fibrin and debris-rich environment within the peritoneal cavity, which may reduce the effectiveness of antimicrobial agents and predispose to recurrence or relapse of infection. Strategies to enhance responses to antimicrobial agents therefore have the potential to improve patient outcomes. This study presents pre-clinical data describing the compatibility of tPA and DNase in combination with antimicrobial agents used for the treatment of PD peritonitis. tPA and DNase were stable in standard dialysate solution and in the presence of antimicrobial agents, and were safe when given intraperitoneally in a mouse model with no evidence of local or systemic toxicity. Adjunctive tPA and DNase may have a role in the management of patients presenting with PD peritonitis.  相似文献   
3.
Survivin is a multitasking protein that can inhibit cell death and that is essential for mitosis. Due to these prosurvival activities and the correlation of its expression with tumor resistance to conventional cancer treatments, survivin has received much attention as a potential oncotherapeutic target. Nevertheless, many questions regarding its exact role at the molecular level remain to be elucidated. In this study we ask whether the extreme C- and NH2 termini of survivin are required for it to carry out its cytoprotective and mitotic duties. When assayed for their ability to act as a cytoprotectant, both survivin1–120 and survivin11–142 were able to protect cells against TRAIL-mediated apoptosis, but when challenged with irradiation cells expressing survivin11–142 had no survival advantage. During mitosis, however, removing the NH2 terminal 10 amino acids (survivin11–142) had no apparent effect but truncating 22 amino acids from the C-terminus (survivin1–120) prevented survivin from transferring to the midzone microtubules during anaphase. Collectively the data herein presented suggest that the C-terminus is required for cell division, and that the NH2 terminus is dispensable for apoptosis and mitosis but required for protection from irradiation.  相似文献   
4.
5.
6.
The focus of this review is on the micronucleus and macronucleus in the ciliated protozoa and the organization and function of the DNA molecules within them. We present (1) some of the structural and functional differences which are known, (2) the genetic evidence for macronuclear units, (3) two hypotheses for the organization of the DNA molecules in the macronucleus to explain these units, and (4) experiments designed to discriminate between these hypotheses. We conclude that the size of the genome is not reduced in the macronucleus and that there are 45 copies of the haploid genome present in the macronucleus of normal strains of Tetrahymena pyriformis and 800 copies in the macronucleus of Paramecium aurelia. The ciliate genome is relatively simple in terms of repeated sequences. However, not all copies of the genes present in the macronucleus may be identical since fractions of differing thermal stability appear after renaturation.The work reported in this paper has been supported by a research grant, GM 15879, from the National Institute of General Medical Sciences, U.S. Public Health Service, and by grants from the Science and Medical Research Councils of Great Britain. We are also grateful to the Center for Human Growth and Development, University of Michigan, for a summer fellowship facilitating collaboration.  相似文献   
7.
8.
9.
Flowering in Arabidopsis is accelerated by a reduced ratio of red light to far-red light (R/FR), which indicates the proximity of competitive vegetation. By exploiting the natural genetic variation in flowering time responses to low R/FR, we obtained further insight into the complex pathways that fine-tune the transition to flowering in Arabidopsis. The Bla-6 ecotype does not flower significantly earlier in response to low R/FR, but is still able to display other features of shade avoidance, suggesting branching of low R/FR signalling. Here we show that the muted flowering response of Bla-6 is due to high levels of the floral repressor FLOWERING LOCUS C (FLC), conferred by a combination of functional FLC and FRIGIDA ( FRI ) alleles with a 'weak' FY allele. The Bla-6 FY allele encodes a protein with a corrupted WW binding domain, and we provide evidence that this locus plays a key role in the natural variation in light quality-induced flowering in Arabidopsis. In Bla-6, FLC blocks promotion to flowering by reduced R/FR by inhibiting expression of the floral integrator FLOWERING LOCUS T ( FT ) in a dose-dependent manner. Reduction of FLC removes this obstruction, and Bla6 plants then exhibit strong induction of FT and flower early in response to a low R/FR signal. This paper illustrates the intricate interaction of environmental signals and genetic factors to regulate flowering in Arabidopsis.  相似文献   
10.
Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host–microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage‐specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent‐gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host–microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis‐driven research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号