首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   11篇
  2011年   11篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
1.
Addition of a mixture of EGF + insulin to quiescent cell cultures synergistically stimulates the cells to reinitiate DNA synthesis and cell division. We have previously demonstrated that this mixture rapidly increases ATP turnover in quiescent cells. The present work shows that each of the two growth factors, EGF and insulin, when added separately to quiescent cells was able to stimulate the phosphorylation of the organic acid-soluble compounds (Po) pool and ATP turnover. The stimulation of ATP turnover was closely correlated with the increase in phosphorylation of the Po pool which suggests that Po labelling reflects the ATP turnover. In many experiments, the synergy between the two growth factors on the early increase in phosphorylation of the Po pool was clearly shown. Doubling the concentration of EGF (12-24 ng/ml) or insulin (50-100 ng/ml) did not increase early stimulation of phosphorylation of the Po pool, whereas simultaneous addition of the two growth factors induced a greater stimulation than that of each growth factor separately added. The augmentation in Po labelling after addition of EGF or insulin alone was transient. The synergistic effect of the two growth factors was more significant when determined 150 or 300 min after growth-factor addition. In our experimental conditions, each of the two growth factors, EGF and insulin, was able to induce a stimulation of DNA synthesis. However, the best stimulatory effect was observed with the mixture of the two which synergistically increased DNA synthesis determined between 6 and 24 h after growth-factor addition. The comparison between DNA replication and Po labelling suggests a correlation between the increase in DNA replication and in the total ATP synthesized in the first 5 h after cell stimulation by growth factors added separately or in combination.  相似文献   
2.
Background and aimThe benefits of the physical exercise in aging, and specially in frailty, have been associated with reduced risk of mortality, chronic disease, and cognitive and functional impairments. Multi-component training, which combines strength, endurance, balance, and gait training, represents the most beneficial kind of physical exercise in older adults.MethodsGiven the effectiveness of the multi-component training, a physical exercise program «Actívate» (based on the methodology Vivifrail), with the focus on «active aging», was conducted in the present study. Forty-nine older adults over 60 years participated in this program.ResultsThe physical exercise intervention led to a reduction in diastolic blood pressure, pain threshold and sleep disturbances (e. g. hypersomnia) (t ≥ 2.72, p < 0.01), as well as an increase of walking speed (t = 7.84, p ≤ 0.001). Further, quality of life factors (GENCAT scale), like emotional well-being, personal development, physical well-being, self-determination, and social inclusion, were greater after intervention (t ≥ ?2.06, p < 0.05).ConclusionsThese findings underline the benefits of multi-component training in functionality of older adults, and further, provide relevant aspects about the modulation of pain perception, sleep disturbances, social factors and physical and emotional well-being. Physical exercise programs such as «Actívate» should be promoted, in order to encourage healthy lifestyle habits, in the older adults’ population.  相似文献   
3.
Proteins have a highly dynamic nature and there is a complex interrelation between their structural dynamics and binding behavior. By assuming various conformational ensembles, they perform both local and global fluctuations to interact with other proteins in a dynamic infrastructure adapted to functional motion. Here, we show that there is a significant association between allosteric mutations, which lead to high-binding-affinity changes, and the hinge positions of global modes, as revealed by a large-scale statistical analysis of data in the Structural Kinetic and Energetic Database of Mutant Protein Interactions (SKEMPI). We further examined the mechanism of allosteric dynamics by conducting studies on human growth hormone (hGH) and pyrin domain (PYD), and the results show how mutations at the hinge regions could allosterically affect the binding-site dynamics or induce alternative binding modes by modifying the ensemble of accessible conformations. The long-range dissemination of perturbations in local chemistry or physical interactions through an impact on global dynamics can restore the allosteric dynamics. Our findings suggest a mechanism for the coupling of structural dynamics to the modulation of protein interactions, which remains a critical phenomenon in understanding the effect of mutations that lead to functional changes in proteins.  相似文献   
4.
5.
An efficient in vitro propagation protocol, applicable both to young and mature explants of two Thymus spp., results in genetically stable plantlets. In vitro-grown shoot tips of Thymus vulgaris L. were exposed to cytokinins (6-benzyladenine, kinetin, and thidiazuron) alone or in combination with auxins, gibberellic acid (GA3) and/or silver nitrate in order to optimize in vitro shoot proliferation. Optimum shoot proliferation (97% regeneration rate, with 8.6 shoots produced per explant) was obtained when semi-solid Murashige and Skoog (MS) medium was supplemented with 1 mg L−1 kinetin and 0.3 mg L−1 GA3. Rooting of the shoots was easily obtained on semi-solid MS medium that was either hormone-free or supplemented with auxins. However, the best root apparatus (92.5% rooting rate, with 19 adventitious roots per shoot) developed on MS medium supplemented with 0.05 mg L−1 2,4-dichlorophenoxyacetic acid. Genetic stability was confirmed in the in vitro-germinated mother plant as well as the shoots that underwent two, four, six, eight, or ten cycles of in vitro subculturing by random amplified polymorphic DNA (RAPD) analysis. When applied to the micropropagation of mature shoot tips of T. longicaulis C. Presl subsp. longicaulis var. subisophyllus (Borbás) Jalas, the optimized in vitro propagation protocol resulted in a 97.5% shoot regeneration rate, with five shoots formed per explant, and 100% rooting. Rooted plantlets of both species were transferred to 250-mL plastic pots and successfully acclimatized by gradually reducing the relative humidity.  相似文献   
6.
The desert rodents Psammomys obesus and Gerbillus tarabuli live under extreme conditions and overcome food and water shortage by modes of food and fluid intake specific to each species. Using immunohistochemistry and electron microscopy, we found that the hypothalamic magnocellular nuclei, and in particular, their vasopressinergic component, is highly and similarly developed in Psammomys and Gerbillus. In comparison to other rodents, the hypothalamus in both species contains more magnocellular VP neurons that, together with oxytocin neurons, accumulate in distinct and extensive nuclei. As in dehydrated rodents, many magnocellular neurons contained both neuropeptides. A striking feature of the hypothalamic magnocellular system of Psammomys and Gerbillus was its display of ultrastructural properties related to heightened neurosecretion, namely, a significant reduction in glial coverage of neuronal somata and dendrites in the hypothalamic nuclei. There were many neuronal elements whose surfaces were directly juxtaposed and shared the same synapses. Their magnocellular nuclei also showed a high level of sialylated isoform of the Neural Cell Adhesion Molecule (PSA-NCAM) that underlies their capacity for neuronal and glial plasticity. These species thus offer striking models of structural neuronal and glial plasticity linked to natural conditions of heightened neurosecretion.  相似文献   
7.
We study the patterns that short strands of single-stranded DNA form on the top graphene surface of graphite. We find that the DNA assembles into two distinct patterns, small spherical particles and elongated networks. Known interaction models based on DNA-graphene binding, hydrophobic interactions, or models based on the purine/pyrimidine nature of the bases do not explain our observed crossover in pattern formation. We argue that the observed assembly behavior is caused by a crossover in the competition between base-base pi stacking and base-graphene pi stacking and we infer a critical crossover energy of 0.3-0.5 eV. The experiments therefore provide a projective measurement of the base-base interaction strength.  相似文献   
8.
An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.08, 0.4, and 4 W/kg (with 10, 10, 12, and 9 rats, respectively), while cage control rats were kept in the animal facility (11 rats). Dams were exposed from days 6 to 21 of gestation and then three newborns per litter were further exposed from birth to day 35 postnatal. On day 35 after birth, all pups were sacrificed and sera collected. The screening of sera for antibodies directed against 15 different antigens related to damage and/or pathological markers was conducted using enzyme-linked immunosorbent assay (ELISA). No change in humoral response of young pups was observed, regardless of the types of biomarker and SAR levels. This study also provided some data on gestational outcome following in utero exposure to Wi-Fi signals. Mass evaluation of dams and pups and the number of pups per litter was monitored, and the genital tracts of young rats were observed for abnormalities by measuring anogenital distance. Under these experimental conditions, our observations suggest a lack of adverse effects of Wi-Fi exposure on delivery and general condition of the animals.  相似文献   
9.
10.
We investigated three families whose offspring had extreme microcephaly at birth and profound mental retardation. Brain scans and postmortem data showed that affected individuals had brains less than 10% of expected size (≤10 standard deviation) and that in addition to a massive reduction in neuron production they displayed partially deficient cortical lamination (microlissencephaly). Other body systems were apparently unaffected and overall growth was normal. We found two distinct homozygous mutations of NDE1, c.83+1G>T (p.Ala29GlnfsX114) in a Turkish family and c.684_685del (p.Pro229TrpfsX85) in two families of Pakistani origin. Using patient cells, we found that c.83+1G>T led to the use of a novel splice site and to a frameshift after NDE1 exon 2. Transfection of tagged NDE1 constructs showed that the c.684_685del mutation resulted in a NDE1 that was unable to localize to the centrosome. By staining a patient-derived cell line that carried the c.83+1G>T mutation, we found that this endogeneously expressed mutated protein equally failed to localize to the centrosome. By examining human and mouse embryonic brains, we determined that NDE1 is highly expressed in neuroepithelial cells of the developing cerebral cortex, particularly at the centrosome. We show that NDE1 accumulates on the mitotic spindle of apical neural precursors in early neurogenesis. Thus, NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. Our data further highlight the importance of the centrosome in multiple aspects of neurodevelopment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号