首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   16篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1945年   1篇
  1944年   2篇
排序方式: 共有55条查询结果,搜索用时 312 毫秒
1.
Pig synovial fibroblasts were shown to produce a protein that caused live cartilage to resorb its proteoglycan matrix in vitro. Fibroblasts were obtained either from synovial tissue digest or by allowing them to grow out of explants. The population derived from the digests was homogeneous and free of macrophage-like cells after two passages, but was still producing the cartilage-resorbing protein after seven passages. The active protein was found to have Mr 20,000 on gell filtration, and pI 4.8 on isoelectric focussing in polyacrylamide gel. It was indistinguishable from a protein with the same activity from pig mononuclear leucocytes, which has been called catabolin. Production of the protein was increased if the synovial fibroblasts were cultured with the tumour promoter phorbol 12-myristate 13-acetate. Fibroblasts from other sources (joint capsule and peritoneum) also apparently made the protein. The possibility that catabolin is the same as interleukin-1 is discussed: if they are, then the results suggest that fibroblasts can make an interleukin-1-life protein.  相似文献   
2.
IL-1 increases phosphorylation of the small heat shock protein (hsp27) in intact cells. This change was also shown both by introducing [gamma-32P]ATP and Mg2+ into MRC-5 fibroblasts permeabilized by LPC after stimulation by IL-1, and by adding the labeled ATP and Mg2+ to cell extracts. Hsp27 phosphorylated in permeabilized cells or cell extracts was shown by 2D electrophoresis to comprise the three forms seen in metabolically labeled cells, suggesting that the physiologically relevant kinase was acting on the substrate in vitro. Mixing of extracts of resting and IL-1-stimulated cells revealed that stimulated cells contained increased levels of kinase activity that phosphorylated substrate hsp27 in the extracts of resting cells. Existence of the activated kinase was confirmed by showing that extracts of IL-1-stimulated cells phosphorylated purified homogeneous hsp27 at a greater rate than those of resting cells. The kinase activity was maximal in cells stimulated with IL-1 for 5 to 10 min, but had declined to the resting level after stimulation for 40 min. Membrane and cytosolic fractions prepared from cell homogenates both contained hsp27 kinase, but the IL-1-dependent increase was associated with the cytosolic fraction. TNF-stimulated cells also contained increased hsp27 kinase activity in the cytosol. The evidence suggests that the cytosolic hsp27 kinase is responsible for the changes in hsp27 phosphorylation induced by the cytokines in intact cells.  相似文献   
3.
Interleukin 1 or tumor necrosis factor alpha can cause a transient down-modulation of epidermal growth factor (EGF) binding to quiescent fibroblast monolayers; the effect results from a reduction in EGF receptor (EGF-R) affinity and appears to be mediated by a protein kinase C (PKC)-independent mechanism. Here we show transient increases in EGF-R serine/threonine phosphorylation which are temporally coordinated with the effects on EGF binding; we also demonstrate that the cytokine-mediated phosphorylations, unlike those caused by PKC activators, have little discernible effect upon intrinsic EGF-R-associated tyrosine kinase activity. Cytokine-mediated EGF-R phosphorylation is resistant to staurosporine, an extremely potent inhibitor of PKC. Analysis of tryptic 32P-phosphopeptides reveals that Thr654, the unique site of PKC-mediated phosphorylation, is not phosphorylated in cytokine-treated cells, but a different, relatively acidic, peptide containing phosphoserine can be detected instead.  相似文献   
4.
5.
Tristetraprolin (TTP) directs its target AU-rich element (ARE)-containing mRNAs for degradation by promoting removal of the poly(A) tail. The p38 MAPK pathway regulates mRNA stability via the downstream kinase MAPK-activated protein kinase 2 (MAPKAP kinase 2 or MK2), which phosphorylates and prevents the mRNA-destabilizing function of TTP. We show that deadenylation of endogenous ARE-containing tumor necrosis factor mRNA is inhibited by p38 MAPK. To investigate whether phosphorylation of TTP by MK2 regulates TTP-directed deadenylation of ARE-containing mRNAs, we used a cell-free assay that reconstitutes the mechanism in vitro. We find that phosphorylation of Ser-52 and Ser-178 of TTP by MK2 results in inhibition of TTP-directed deadenylation of ARE-containing RNA. The use of 14-3-3 protein antagonists showed that regulation of TTP-directed deadenylation by MK2 is independent of 14-3-3 binding to TTP. To investigate the mechanism whereby TTP promotes deadenylation, it was necessary to identify the deadenylases involved. The carbon catabolite repressor protein (CCR)4·CCR4-associated factor (CAF)1 complex was identified as the major source of deadenylase activity in HeLa cells responsible for TTP-directed deadenylation. CAF1a and CAF1b were found to interact with TTP in an RNA-independent fashion. We find that MK2 phosphorylation reduces the ability of TTP to promote deadenylation by inhibiting the recruitment of CAF1 deadenylase in a mechanism that does not involve sequestration of TTP by 14-3-3. Cyclooxygenase-2 mRNA stability is increased in CAF1-depleted cells in which it is no longer p38 MAPK/MK2-regulated.  相似文献   
6.
7.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway, acting through the downstream kinase MK2, regulates the stability of many proinflammatory mRNAs that contain adenosine/uridine-rich elements (AREs). It is thought to do this by modulating the expression or activity of ARE-binding proteins that regulate mRNA turnover. MK2 phosphorylates the ARE-binding and mRNA-destabilizing protein tristetraprolin (TTP) at serines 52 and 178. Here we show that the p38 MAPK pathway regulates the subcellular localization and stability of TTP protein. A p38 MAPK inhibitor causes rapid dephosphorylation of TTP, relocalization from the cytoplasm to the nucleus, and degradation by the 20S/26S proteasome. Hence, continuous activity of the p38 MAPK pathway is required to maintain the phosphorylation status, cytoplasmic localization, and stability of TTP protein. The regulation of both subcellular localization and protein stability is dependent on MK2 and on the integrity of serines 52 and 178. Furthermore, the extracellular signal-regulated kinase (ERK) pathway synergizes with the p38 MAPK pathway to regulate both stability and localization of TTP. This effect is independent of kinases that are known to be synergistically activated by ERK and p38 MAPK. We present a model for the actions of TTP and the p38 MAPK pathway during distinct phases of the inflammatory response.  相似文献   
8.
A cartilage catabolic factor from synovium.   总被引:19,自引:5,他引:14       下载免费PDF全文
Porcine synovium in organ culture produces a factor that causes chondrocytes to degrade their matrix. A quantitative assay for the factor, for which the cartilage of bovine nasal septum is used, is described. Evidence is presented that the catabolic factor is a protein.  相似文献   
9.
10.
The post-receptor events which follow the binding of interleukin 1 (IL1) to cells are unclear. The present studies provide evidence for the activation of a guanine nucleotide binding protein (G protein) by IL1 in the membranes of an IL1 receptor-rich strain (NOB-1) of the EL4 murine thymoma line. IL1 alpha and beta increased the binding of the GTP analogue [35S]guanosine 5'-[gamma-thiol]trisphosphate (GTP gamma S) to membranes prepared from these cells. By 1 min after addition of IL1 there was a 2-fold enhancement in binding which was dose dependent in the range 0.1-100 ng/ml. A qualitatively similar result was obtained with IL1 beta although it was 10 times less potent. Specific neutralizing antisera to IL1 alpha and IL1 beta abolished the response. Experiments in which the concentration of [35S]GTP gamma S was varied revealed that IL1 increased the affinity of the binding sites for [35S]GTP gamma S and not their number. IL1 alpha was shown to stimulate GTPase activity in the membranes, the time and concentration dependence of this was similar to that observed for increased [35S]GTP gamma S binding. Half-maximal enhancement of [35S]GTP gamma S binding by IL1 alpha, measured after 4 min, occurred at 5% IL1 receptor occupancy. Maximal stimulation was achieved when 30% of receptors were occupied. Experiments with pertussis and cholera toxins revealed that pretreating membranes with pertussis toxin (100 ng/ml) inhibited by 50% the IL1-induced [35S]GTP gamma S binding and [gamma-32P]GTP hydrolysis. Cholera toxin (100 ng/ml) was without effect. However, both pertussis and cholera toxins at concentrations of 100 ng/ml inhibited IL1-induced IL2 secretion in EL4 NOB-1 cells. These results show that the IL1 receptor of a responsive thymoma line activates, and may be coupled to, a G protein(s). This is a possible mechanism of IL1 signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号