首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21736篇
  免费   2102篇
  国内免费   2742篇
  2024年   17篇
  2023年   395篇
  2022年   492篇
  2021年   1251篇
  2020年   1041篇
  2019年   1221篇
  2018年   1113篇
  2017年   839篇
  2016年   1080篇
  2015年   1552篇
  2014年   1874篇
  2013年   1862篇
  2012年   2235篇
  2011年   2007篇
  2010年   1288篇
  2009年   1075篇
  2008年   1155篇
  2007年   1033篇
  2006年   844篇
  2005年   750篇
  2004年   564篇
  2003年   485篇
  2002年   417篇
  2001年   275篇
  2000年   224篇
  1999年   217篇
  1998年   172篇
  1997年   145篇
  1996年   145篇
  1995年   111篇
  1994年   97篇
  1993年   79篇
  1992年   95篇
  1991年   68篇
  1990年   64篇
  1989年   59篇
  1988年   36篇
  1987年   28篇
  1986年   30篇
  1985年   31篇
  1984年   16篇
  1983年   18篇
  1982年   16篇
  1981年   7篇
  1979年   10篇
  1978年   4篇
  1976年   9篇
  1975年   8篇
  1974年   4篇
  1950年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Drought significantly affects the architectural development of maize inflorescence, which leads to massive losses in grain yield. However, the genetic mechanism for traits involved in inflorescence architecture in different watering environments, remains poorly understood in maize. In this study, 19 QTLs for tassel primary branch number (TBN) and ear number per plant (EN) were detected in 2 F2:3 populations under both well-watered and water-stressed environments by single environment mapping with composite interval mapping (CIM); 11/19 QTLs were detected under water-stressed environments. Moreover, 21 QTLs were identified in the 2 F2:3 populations by joint analysis of all environments with a mixed linear model based on composite interval mapping (MCIM), 11 QTLs were involved in QTL × environment interactions, seven epistatic interactions were identified with additive by additive/dominance effects. Remarkably, 12 stable QTLs (sQTLs) were simultaneously detected by single environment mapping with CIM and joint analysis through MCIM, which were concentrated in ten bins across the chromosomes: 1.05_1.07, 1.08_1.10, 2.01_2.04, 3.01, 4.06, 4.09, 5.06_5.07, 6.05, 7.00, and 7.04 regions. Twenty meta-QTLs (mQTLs) were detected across 19 populations under 51 watering environments using a meta-analysis, and 34 candidate genes were predicted in corresponding mQTLs regions to be involved in the regulation of inflorescence development and drought resistance. Therefore, these results provide valuable information for finding quantitative trait genes and to reveal the genetic mechanisms responsible for TBN and EN under different watering environments. Furthermore, alleles for TBN and EN provide useful targets for marker-assisted selection to generate high-yielding maize varieties.  相似文献   
3.
4.
For the development of “medical foods” and/or botanical drugs as defined USA FDA, clear and systemic characterizations of the taxonomy, index phytochemical components, and the functional or medicinal bioactivities of the reputed or candidate medicinal plant are needed. In this study, we used an integrative approach, including macroscopic and microscopic examination, marker gene analysis, and chemical fingerprinting, to authenticate and validate various species/varieties of Wedelia, a reputed medicinal plant that grows naturally and commonly used in Asian countries. The anti-inflammatory bioactivities of Wedelia extracts were then evaluated in a DSS-induced murine colitis model. Different species/varieties of Wedelia exhibited distinguishable morphology and histological structures. Analysis of the ribosomal DNA internal transcribed spacer (ITS) region revealed significant differences among these plants. Chemical profiling of test Wedelia species demonstrated candidate index compounds and distinguishable secondary metabolites, such as caffeic acid derivatives, which may serve as phytochemical markers or index for quality control and identification of specific Wedelia species. In assessing their effect on treating DSS induced-murine colitis, we observed that only the phytoextract from W. chinensis species exhibited significant anti-inflammatory bioactivity on DSS-induced murine colitis among the various Wedelia species commonly found in Taiwan. Our results provide a translational research approach that may serve as a useful reference platform for biotechnological applications of traditional phytomedicines. Our findings indicate that specific Wedelia species warrant further investigation for potential treatment of human inflammatory bowel disease.  相似文献   
5.
Aging process in mammals is associated with a decline in amplitude and a long period of circadian behaviors which are regulated by a central circadian regulator in the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. It is unclear whether enhancing clock function can retard aging. Using fibroblasts expressing per2::lucSV and senescent cells, we revealed cycloastragenol (CAG), a natural aglycone derivative from astragaloside IV, as a clock amplitude enhancing small molecule. CAG could activate telomerase to antiaging, but no reports focused on its effects on circadian rhythm disorders in aging mice. Here we analyze the potential effects of CAG on d -galactose-induced aging mice on the circadian behavior and expression of clock genes. For this purpose, CAG (20 mg/kg orally), was administered daily to d -galactose (150 mg/kg, subcutaneous) mice model of aging for 6 weeks. An actogram analysis of free-running activity of these mice showed that CAG significantly enhances the locomotor activity. We further found that CAG increase expressions of per2 and bmal1 genes in liver and kidney of aging mouse. Furthermore, CAG enhanced clock protein BMAL1 and PER2 levels in aging mouse liver and SCN. Our results indicated that the CAG could restore the behavior of circadian rhythm in aging mice induced by d -galactose. These data of present study suggested that CAG could be used as a novel therapeutic strategy for the treatment of age-related circadian rhythm disruption.  相似文献   
6.
Caveolin induces membrane curvature and drives the formation of caveolae that participate in many crucial cell functions such as endocytosis. The central portion of caveolin-1 contains two helices (H1 and H2) connected by a three-residue break with both N- and C-termini exposed to the cytoplasm. Although a U-shaped configuration is assumed based on its inaccessibility by extracellular matrix probes, caveolin structure in a bilayer remains elusive. This work aims to characterize the structure and dynamics of caveolin-1 (D82–S136; Cav182–136) in a DMPC bilayer using NMR, fluorescence emission measurements, and molecular dynamics simulations. The secondary structure of Cav182–136 from NMR chemical shift indexing analysis serves as a guideline for generating initial structural models. Fifty independent molecular dynamics simulations (100 ns each) are performed to identify its favorable conformation and orientation in the bilayer. A representative configuration was chosen from these multiple simulations and simulated for 1 μs to further explore its stability and dynamics. The results of these simulations mirror those from the tryptophan fluorescence measurements (i.e., Cav182–136 insertion depth in the bilayer), corroborate that Cav182–136 inserts in the membrane with U-shaped conformations, and show that the angle between H1 and H2 ranges from 35 to 69°, and the tilt angle of Cav182–136 is 27 ± 6°. The simulations also reveal that specific faces of H1 and H2 prefer to interact with each other and with lipid molecules, and these interactions stabilize the U-shaped conformation.  相似文献   
7.
近年来。笔在研究各地送鉴的大呈吉丁虫标本过程中。鉴定出一批中国新纪录种,今集中加以报道.并分别作简述如下。  相似文献   
8.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
9.
10.
Exosomes derived from differentiated P12 cells and MSCs were proved to suppress apoptosis of neuron cells, and phosphatase and tensin homolog pseudogene 1 (PTENP1) was reported to inhibit cell proliferation. In this study, we aimed to investigate the role of PTENP1 in the process of post-spinal cord injury (SCI) recovery, so as to evaluate the therapeutic effects of exosomes derived from MSCs transfected with PTENP1 short hairpin RNA (shRNA), as a type of novel biomarkers in the treatment of SCI. Electron microscopy was used to observe the morphology of different exosomes. Real-time polymerase chain reaction and western blot, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, flow cytometry, Nissl staining, immunohistochemistry assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were conducted to investigate and validate the underlying molecular signaling pathway. PTENP1-shRNA downregulated PTENP1 and PTEN while upregulating miR-21 and miR-19b. PTENP1-shRNA also accelerated cell apoptosis and reduced cell viability. In addition, PTENP1 reduced the miR-21 and miR-19b expression by directly targeting miR-21 and miR-19b. Meanwhile, both miR-21 and miR-19b reduced the expression of PTEN by directly targeting the 3′-untranslated region of PTEN. Furthermore, PTEN level and apoptosis index of neuron cells was the highest in the SCI group, while the treatment with exosomes+PTENP1-shRNA reduced the PTEN expression to a level similar to that in the sham group. Finally, PTENP1 inhibited miR-21 and miR-19b expression but upregulated PTEN expression. The upregulation of miR-21/miR-19b also suppressed the apoptosis of neuron cells by downregulating the PTEN expression. PTENP1 is involved in the recovery of SCI by regulating the expression of miR-19b and miR-21, and exosomes from PTENP1-shRNA-transfected cells may be used as a novel biomarker in SCI treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号