首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1005篇
  免费   106篇
  2023年   10篇
  2022年   4篇
  2021年   36篇
  2020年   33篇
  2019年   31篇
  2018年   38篇
  2017年   40篇
  2016年   45篇
  2015年   86篇
  2014年   83篇
  2013年   111篇
  2012年   114篇
  2011年   98篇
  2010年   54篇
  2009年   48篇
  2008年   57篇
  2007年   42篇
  2006年   37篇
  2005年   32篇
  2004年   33篇
  2003年   19篇
  2002年   13篇
  2001年   6篇
  2000年   2篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1972年   1篇
  1936年   1篇
排序方式: 共有1111条查询结果,搜索用时 15 毫秒
1.
Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite’s life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion.  相似文献   
2.
In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. Our equation was validated with simulations of a previously published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends crucially on the shape of the Na activation function near spike initiation (about −55 mV), while its parameters are adjusted near half-activation voltage (about −30 mV), which might explain why many models exhibit little threshold variability, contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold.  相似文献   
3.
Fractional anisotropy (FA) is an effective marker of motor outcome at the chronic stage of stroke yet proves to be less efficient at early time points. This study aims to determine which diffusion metric in which location is the best marker of long-term stroke outcome after thrombolysis with diffusion tensor imaging (DTI) at 24 hours post-stroke. Twenty-eight thrombolyzed patients underwent DTI at 24 hours post-stroke onset. Ipsilesional and contralesional FA, mean (MD), axial (AD), and radial (RD) diffusivities values were calculated in different Regions-of-Interest (ROIs): (1) the white matter underlying the precentral gyrus (M1), (2) the corona radiata (CoRad), (3) the posterior limb of the internal capsule (PLIC) and (4) the cerebral peduncles (CP). NIHSS scores were acquired at admission, day 1, and day 7; modified Rankin Scores (mRS) at 3 months. Significant decreases were found in FA, MD, and AD of the ipsilesional CoRad and M1. MD and AD were also significantly lower in the PLIC. The ratio of ipsi and contralesional AD of the CoRad (CoRad-rAD) was the strongest diffusion parameter correlated with motor NIHSS scores on day 7 and with the mRS at 3 months. A Receiver-Operator Curve analysis yielded a model for the CoRad-rAD to predict good outcome based on upper limb NIHSS motor scores and mRS with high specificity and sensitivity. FA values were not correlated with clinical outcome. In conclusion, axial diffusivity of the CoRad from clinical DTI at 24 hours post-stroke is the most appropriate diffusion metric for quantifying stroke damage to predict outcome, suggesting the importance of early axonal damage.  相似文献   
4.
Although different mechanisms have been proposed in the recent years, plant pathogen partial resistance is still poorly understood. Components of the chemical warfare, including the production of plant defense compounds and plant resistance to pathogen-produced toxins, are likely to play a role. Toxins are indeed recognized as important determinants of pathogenicity in necrotrophic fungi. Partial resistance based on quantitative resistance loci and linked to a pathogen-produced toxin has never been fully described. We tested this hypothesis using the Alternaria dauci – carrot pathosystem. Alternaria dauci, causing carrot leaf blight, is a necrotrophic fungus known to produce zinniol, a compound described as a non-host selective toxin. Embryogenic cellular cultures from carrot genotypes varying in resistance against A. dauci were confronted with zinniol at different concentrations or to fungal exudates (raw, organic or aqueous extracts). The plant response was analyzed through the measurement of cytoplasmic esterase activity, as a marker of cell viability, and the differentiation of somatic embryos in cellular cultures. A differential response to toxicity was demonstrated between susceptible and partially resistant genotypes, with a good correlation noted between the resistance to the fungus at the whole plant level and resistance at the cellular level to fungal exudates from raw and organic extracts. No toxic reaction of embryogenic cultures was observed after treatment with the aqueous extract or zinniol used at physiological concentration. Moreover, we did not detect zinniol in toxic fungal extracts by UHPLC analysis. These results suggest that strong phytotoxic compounds are present in the organic extract and remain to be characterized. Our results clearly show that carrot tolerance to A. dauci toxins is one component of its partial resistance.  相似文献   
5.
HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses’ receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.  相似文献   
6.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   
7.
Early detection and accurate estimation of aortic stenosis (AS) severity are the most important predictors of successful long-term outcomes in patients. Current clinical parameters used for evaluation of the AS severity have several limitations including flow dependency. Estimation of AS severity is specifically challenging in patients with low-flow and low transvalvular pressure gradient conditions. A proper diagnosis in these patients needs a comprehensive evaluation of the left ventricle (LV) hemodynamic loads. This study has two objectives: (1) developing a lumped-parameter model to describe the ventricular-valvular-arterial interaction and to estimate the LV stroke work (SW); (2) introducing and validating a new index, the normalized stroke work (N-SW), to assess the global hemodynamic load imposed on the LV. N-SW represents the global hemodynamic load that the LV faces for each unit volume of blood ejected. The model uses a limited number of parameters which all can be measured non-invasively using current clinical imaging modalities. The model was first validated by comparing its calculated flow waveforms with the ones measured using Cardiovascular Magnetic Resonance (CMR) in 49 patients and 8 controls. A very good correlation and concordance were found throughout the cycle (median root mean square: 12.21 mL/s) and between the peak values (r = 0.98; SEE = 0.001, p<0.001). The model was then used to determine SW using the parameters measured with transthoracic Doppler-echocardiography (TTE) and CMR. N-SW showed very good correlations with a previously-validated index of global hemodynamic load, the valvular arterial impedance (), using data from both imaging modalities (TTE: r = 0.82, SEE = 0.01, p<0.001; CMR: r = 0.74, SEE = 0.01, p<0.001). Furthermore, unlike , N-SW was almost independent from variations in the flow rate. This study suggests that considering N-SW may provide incremental diagnostic and prognostic information, beyond what standard indices of stenosis severity and provide, particularly in patients with low LV outflow.  相似文献   
8.
Wetlands Ecology and Management - Understanding the impacts of wood harvesting intensity on the diversity and structure of ecosystems such as mangroves is essential for defining actions for their...  相似文献   
9.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   
10.
We provide data on nutrient export for 28 rivers in southwestern Europe and analyze long-term changes in the context of anthropogenic pressures and regulation policies. Special attention is given to seasonal variations, because the integrated annual values that are usually provided do not allow us to establish comparisons with seasonal phytoplankton dynamics. The eutrophication risk associated with river inputs is addressed by means of an indicator (Index of Coastal Eutrophication Potential, ICEP, Billen and Garnier, Mar Chem 106:148–160, 2007). An overview of the temporal evolution and the intra-annual variability of the ICEP is discussed for specific rivers and integrated coastal regions. The annual dynamics of the eutrophication indicator is analyzed to delimit those periods when the risk of eutrophication is particularly high. The trends in nutrient fluxes and coastal phytoplankton are compared by means of a case study (Seine Bay). The decrease in phosphorus matches a general decrease in phytoplankton biomass in the summer. However, sustained high values of nitrogen still foster the emergence of harmful algal blooms, and we found an increase in the summer abundance of dinoflagellates. The abatement of phosphorus alone is not enough to shortcut harmful blooms and toxic outbreaks in the Seine Bay. A reduction in nitrogen inputs may be necessary to effectively minimize eutrophication problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号