首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77290篇
  免费   7379篇
  国内免费   42篇
  2021年   892篇
  2020年   634篇
  2019年   785篇
  2018年   1085篇
  2017年   955篇
  2016年   1679篇
  2015年   2734篇
  2014年   3126篇
  2013年   3990篇
  2012年   5130篇
  2011年   5037篇
  2010年   3364篇
  2009年   3007篇
  2008年   4312篇
  2007年   4464篇
  2006年   4254篇
  2005年   3949篇
  2004年   3995篇
  2003年   3788篇
  2002年   3536篇
  2001年   964篇
  2000年   720篇
  1999年   916篇
  1998年   962篇
  1997年   710篇
  1996年   619篇
  1995年   679篇
  1994年   665篇
  1993年   703篇
  1992年   722篇
  1991年   648篇
  1990年   621篇
  1989年   626篇
  1988年   607篇
  1987年   587篇
  1986年   590篇
  1985年   638篇
  1984年   728篇
  1983年   649篇
  1982年   764篇
  1981年   820篇
  1980年   764篇
  1979年   518篇
  1978年   560篇
  1977年   513篇
  1976年   470篇
  1975年   440篇
  1974年   487篇
  1973年   436篇
  1972年   305篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Recently approved chemotherapeutic agents to treat colorectal cancer (CRC) have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β) activity. Temozolomide (TMZ), an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER) pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715). In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP) site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.  相似文献   
3.
4.
5.
China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China.  相似文献   
6.
slyD encodes a 196 amino acid polypeptide that is a member of the FKBP family of cis–trans peptidyl–prolyl isomerases (PPIases). slyD mutations affect plaque formation by the phage φX174 by blocking the action of the phage lysis protein E. Here we describe the selection of a set of spontaneous slyD mutations conferring resistance to the expression of gene E from a plasmid. These mutations occur disproportionately in residues of SlyD that, based on the structure of the prototype mammalian FKBP12, make ligand contacts with immunosuppressing drug molecules or are conserved in other FKBP proteins. A wide variation in the plating efficiency of φX174 on these E  R strains is observed, relative to the parental, indicating that these alleles differ widely in residual SlyD activity. Moreover, it is found that slyD mutations cause significant growth rate defects in Escherichia coli B and C backgrounds. Finally, overexpression of slyD causes filamentation of the host. Thus, among the FKBP genes found in organisms across the evolutionary spectrum, slyD is unique in having three distinct drug-independent phenotypes.  相似文献   
7.
Although numerous people grow up speaking more than one language, the impact of bilingualism on brain developing neuroanatomy is still poorly understood. This study aimed to determine whether the changes in the mean fractional-anisotropy (MFA) of language pathways are different between bilingual and monolingual children. Simultaneous-bilinguals, sequential-bilinguals and monolingual, male and female 10–13 years old children participated in this longitudinal study over a period of two years. We used diffusion tensor tractography to obtain mean fractional-anisotropy values of four language related pathways and one control bundle: 1-left-inferior-occipitofrontal fasciculus/lIFOF, 2-left-arcuate fasciculus/lAF/lSLF, 3-bundle arising from the anterior part of corpus-callosum and projecting to orbital lobe/AC-OL, 4-fibres emerging from anterior-midbody of corpus-callosum (CC) to motor cortices/AMB-PMC, 5- right-inferior-occipitofrontal fasciculus rIFOF as the control pathway unrelated to language. These values and their rate of change were compared between 3 groups. FA-values did not change significantly over two years for lAF/lSLF and AC-OL. Sequential-bilinguals had the highest degree of change in the MFA value of lIFOF, and AMB-PMC did not present significant group differences. The comparison of MFA of lIFOF yielded a significantly higher FA-value in simultaneous bilinguals compared to monolinguals. These findings acknowledge the existing difference of the development of the semantic processing specific pathway between children with different semantic processing procedure. These also support the hypothesis that age of second language acquisition affects the maturation and myelination of some language specific white-matter pathways.  相似文献   
8.
Predictive coding has been previously introduced as a hierarchical coding framework for the visual system. At each level, activity predicted by the higher level is dynamically subtracted from the input, while the difference in activity continuously propagates further. Here we introduce modular predictive coding as a feedforward hierarchy of prediction modules without back-projections from higher to lower levels. Within each level, recurrent dynamics optimally segregates the input into novelty and familiarity components. Although the anatomical feedforward connectivity passes through the novelty-representing neurons, it is nevertheless the familiarity information which is propagated to higher levels. This modularity results in a twofold advantage compared to the original predictive coding scheme: the familiarity-novelty representation forms quickly, and at each level the full representational power is exploited for an optimized readout. As we show, natural images are successfully compressed and can be reconstructed by the familiarity neurons at each level. Missing information on different spatial scales is identified by novelty neurons and complements the familiarity representation. Furthermore, by virtue of the recurrent connectivity within each level, non-classical receptive field properties still emerge. Hence, modular predictive coding is a biologically realistic metaphor for the visual system that dynamically extracts novelty at various scales while propagating the familiarity information.  相似文献   
9.
The starvation-stress response (SSR) of Salmonella typhimurium encompasses the physiological changes that occur upon starvation for an essential nutrient, e.g. C-source. A subset of SSR genes, known as core SSR genes, are required for the long-term starvation survival of the bacteria. Four core SSR loci have been identified in S. typhimuriumrpoSstiAstiB, and stiC. Here we report that in S. typhimurium C-starvation induced a greater and more sustainable cross-resistance to oxidative challenge (15 mM hydrogen peroxide (H2O2) for 40 min) than either N- or P-starvation. Of the four core SSR loci, only rpoS and stiC mutants exhibited a defective C-starvation-inducible cross-resistance to H2O2 challenge. Interestingly, (unadapted) log-phase S. typhimurium rpoS and stiA mutants were very sensitive to oxidative challenge. Based on this, we determined if these core SSR loci were important for H2O2 resistance developed during a 60 min adaptive exposure to 60 μM H2O2 (adapted cells). Both unadapted and adapted rpoS and stiA mutants were hypersensitive to a H2O2 challenge. In addition, a stiB mutant exhibited normal adaptive resistance for the first 20 mins of H2O2 challenge but then rapidly lost viability, declining to a level of about 1.5% of the wild-type strain. The results of these experiments indicate that: (i) the rpoS and stiC loci are essential for the development of C-starvation-inducible cross-resistance to oxidative challenge, and (ii) the rpoSstiA, and, in a delayed effect, stiB loci are needed for H2O2-inducible adaptive resistance to oxidative challenge. Moreover, we found that both stiA and stiB are induced by a 60 μM H2O2 exposure, but only stiA was regulated (repressed) by (reduced form) OxyR.  相似文献   
10.
Summary An equation is developed that describes the condition of homeostasis in a general molecular system containing catalysts. In a prebiotic environment, this condition first results from a critical level of catalytic feedback in feedback loops containing differing organic molecular species. This critical level results in temporary exponential growth in concentrations of those catalyst species participating in the feedback loops, leading to homeostasis as the steady-state endpoint. None of the molecules in any feedback loop need be self-replicating for this autocatalysis to occur. Homeostasis is regarded as a definition of life at the lowest possible hierarchical level. A general mathematical boundary condition is derived for the critical level of catalytic feedback mentioned above-in effect, an origin of life condition. The paper argues that any natural prebiotic system of organic molecules in an H2O medium will automatically form many catalytic feedback loops, even if of very low catalytic efficiency. The analysis in this paper indicates that high temperatures strongly increase the efficiency of such catalytic feedback. If the temperature and total concentration of carbon in the system (e.g., in CO2, CH4, etc.) are sufficiently high, the critical condition for initial exponential growth will be attained. High initial temperatures for the earth are predicted by the planetesimal accretion model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号