首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5932篇
  免费   362篇
  国内免费   1篇
  2023年   57篇
  2022年   39篇
  2021年   138篇
  2020年   112篇
  2019年   140篇
  2018年   187篇
  2017年   146篇
  2016年   227篇
  2015年   325篇
  2014年   373篇
  2013年   412篇
  2012年   521篇
  2011年   526篇
  2010年   317篇
  2009年   236篇
  2008年   326篇
  2007年   354篇
  2006年   343篇
  2005年   259篇
  2004年   253篇
  2003年   214篇
  2002年   211篇
  2001年   50篇
  2000年   35篇
  1999年   30篇
  1998年   49篇
  1997年   34篇
  1996年   42篇
  1995年   32篇
  1994年   28篇
  1993年   24篇
  1992年   28篇
  1991年   18篇
  1990年   16篇
  1989年   20篇
  1988年   17篇
  1987年   8篇
  1986年   11篇
  1985年   14篇
  1984年   7篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1979年   12篇
  1978年   10篇
  1977年   9篇
  1976年   6篇
  1975年   9篇
  1974年   8篇
  1973年   8篇
排序方式: 共有6295条查询结果,搜索用时 125 毫秒
1.
2.
3.
Early generations of hybrids can express both genetic incompatibilities and phenotypic novelty. Insights into whether these conflicting interactions between intrinsic and extrinsic selection persist after a few generations of recombination require experimental studies. To address this question, we use interpopulation crosses and recombinant inbred lines (RILs) of the copepod Tigriopus californicus, and focus on two traits that are relevant for the diversification of this species: survivorship during development and tolerance to thermal stress. Experimental crosses between two population pairs show that most RILs between two heat‐tolerant populations show enhanced tolerance to temperatures that are lethal to the respective parentals, whereas RILs between a heat‐tolerant and a heat‐sensitive population are intermediate. Although interpopulation crosses are affected by intrinsic selection at early generational hybrids, most of the sampled F9 RILs have recovered fitness to the level of their parentals. Together, these results suggest that a few generations of recombination allows for an independent segregation of the genes underlying thermal tolerance and cytonuclear incompatibilities, permitting certain recombinant lineages to survive in niches previously unused by parental taxa (i.e., warmer thermal environments) without incurring intrinsic selection.  相似文献   
4.
Cycliophorans have a complex life cycle that involves several sexual and asexual stages. One of the sexual stages is the 40 μm-long dwarf male, which is among the smallest free-living metazoans. Although the dwarf male has a highly complex body plan, this minute organism is composed of a very low number of somatic cells (~50). The developmental processes that give rise to this unique phenotype are largely unknown. Here we use high resolution serial block face—scanning electron microscopy to analyze the anatomy and morphogenesis of three cycliophoran dwarf males at different developmental stages ranging from internal bud to mature male. The anatomical and morphological features of the mature dwarf male stage reported here largely correspond to those reported in earlier studies. Interestingly, the organs that typically characterize the anatomy of the mature dwarf male, e.g., muscles, brain, testis and glands, are already formed in the young male. However, there are striking differences between the mature male and young male stages at the level of cellular architecture. Thus, while the young male stage, like the internal bud stage, possesses approximately 200 nucleated cells, the mature male stage comprises only around 50 nucleated cells; muscle and epidermal cells of the mature male lack nuclei. Moreover, the total body volume of the mature male is only 63% of the body of the young male implying that the maturation of the young male into a mature male involves a marked reduction of internal body volume, mainly by massive nuclei loss. Our comparative analysis of these dwarf male specimens reveals unprecedented insight into the striking morphological and developmental differences that characterize these highly miniaturized male stages both at the level of body organization and at the level of cellular ultrastructure.  相似文献   
5.
6.
7.
8.
Halobacterial megaplasmids are negatively supercoiled   总被引:1,自引:0,他引:1  
Several covalently closed circular halobacterial megaplasmids (up to more than 500 kb) from different strains of Halolerax mediterranei, have been resolved by orthogonal-field alternating gel electro-phoresis (OFAGE). These molecules seem to be negatively supercoiled in vivo, as deduced from the effect of intercalating agents affecting their topology and, therefore, their electrophoretic mobility. It has also been demonstrated that the topolsomerase II Inhibitor novobiocin affects the native topological state of halobacterial megaplasmids impeding their migration in OFAGE under standard conditions for resolution of large supercoiled molecules.  相似文献   
9.
African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.  相似文献   
10.
ACh regulates arousal, and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide (NO)-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mice significantly (P < 0.0001) increased ACh release. Microdialysis delivery of the NO donor N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)-ethanamine (NOC-12) to the mouse pontine reticular formation also caused a concentration-dependent increase in ACh release (P < 0.001). These are the first neurochemical data showing that ACh release in the pontine reticular formation of the B6 mouse is modulated by NO. The signal transduction cascade through which NO modulates ACh release in the pontine reticular formation has not previously been characterized. Therefore, an additional series of studies quantified the effects of a soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), on ACh release in the cat medial pontine reticular formation. During naturally occurring states of sleep and wakefulness, but not anesthesia, ODQ caused a significant (P < 0.001) decrease in ACh release. These results show for the first time that NO modulates ACh in the medial pontine reticular formation of the cat via an NO-sensitive sGC signal transduction cascade. Isoflurane and halothane anesthesia have been shown to decrease ACh release in the medial pontine reticular formation. The finding that ODQ did not alter ACh release during isoflurane or halothane anesthesia demonstrates that these anesthetics disrupt the NO-sensitive sGC-cGMP pathway. Considered together, results from the mouse and cat indicate that NO modulates ACh release in arousal-promoting regions of the pontine reticular formation via an NO-sensitive sGC-cGMP pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号