首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2013年   2篇
  2012年   2篇
  2008年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
In a model of experimental cutaneous leishmaniasis, pre-exposure of Leishmania major-resistant mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor agonist, causes suppression of the protective anti-parasite T helper 1 response while paradoxically also reducing parasite burdens in those animals. In this study, we examined if TCDD exposure could also reduce parasite burdens in L. major-susceptible BALB/c mice. In the highest dose group (160 µg/Kg), TCDD treatment caused a significant reduction of parasite burdens by 10-fold after three weeks while also causing a significant lymphoid atrophy indicating suppression of the non-protective T helper 2 response. A dose-dependent delay of foot lesion progression was also observed such that lesion size in the highest dose group was less than half that of controls after 35 days of infection. Importantly, although TCDD exposure initially reduced disease severity and prolonged the course of disease by as much as three fold in some animals, this effect was transitory and TCDD did not induce resistance to L. major infection. Because TCDD exposure reduced L. major burdens in both resistant and susceptible mice, we hypothesized that TCDD reduces L. major burdens in mice by a mechanism that does not involve adaptive immunity. To test this, severe combined immunodeficient (SCID) mice were used. In mice infected with a moderate number of L. major (10,000), TCDD treatment caused a time- and dose-dependent decrease of parasite burdens by nearly 100-fold after six weeks in the highest dose group (200 µg/Kg). A significant and dose-dependent delay of foot lesion progression was also observed in these animals. These results indicate that TCDD exposure can reduce the severity of leishmanial disease in mice independent of adaptive immunity.  相似文献   
2.
The lymphatic vascular system, the body’s second vascular system present in vertebrates, has emerged in recent years as a crucial player in normal and pathological processes. It participates in the maintenance of normal tissue fluid balance, the immune functions of cellular and antigen trafficking and absorption of fatty acids and lipid-soluble vitamins in the gut. Recent scientific discoveries have highlighted the role of lymphatic system in a number of pathologic conditions, including lymphedema, inflammatory diseases, and tumor metastasis. Development of genetically modified animal models, identification of lymphatic endothelial specific markers and regulators coupled with technological advances such as high-resolution imaging and genome-wide approaches have been instrumental in understanding the major steps controling growth and remodeling of lymphatic vessels. This review highlights the recent insights and developments in the field of lymphatic vascular biology.  相似文献   
3.
Enteric viruses are shed in the feces and may be present in environmental waters. Their detection in wastewater, even at low concentration, is a major challenge. In this study, recoveries of Echovirus 7 (EV7), virions and RNA in wastewater, using virus concentration methods were determined to evaluate the detection of infectious viruses and the possibility of recovering viral genomes. Two virus concentration methods, PEG precipitation method and two-phase separation method, were applied to recovery experiments of EV7-virions from wastewater, in parallel with recovery experiments of EV7 RNA. The titration of EV7 virions was carried out by cell culture using human rhabdomyosarcoma tumor tissue and the EV7 RNA quantification was performed by real-time PCR. The mean recovery yields of EV7 virions using the PEG precipitation method and the two-phase separation method were 78.5?±?10.99 and 83.1?±?0.28?%, respectively. Besides, EV7 RNA recoveries obtained using the PEG precipitation method were four times higher than those using the two-phase separation method. According to our results, the two methods enable to concentrate both infectious viruses and viral genomes. Moreover, considering the protocol time and cost together with the ratio of the EV7 virion recovery to the EV7 RNA recovery, the two-phase separation method (83.1/2.71?%, or 30.6) seems to be more appropriate for selective concentration of viral virions than the PEG precipitation method (78.5/10.33?%, or 7.6).  相似文献   
4.
5.
6.
Modelisation plays a significant role in the study of ion transfer through the cell membrane and in the comprehension of cellular excitability. We were interested in the selective ion transfers through the K(Ca), Na(v), Ca(v) channels and the Na/Ca exchanger (NCX). The membrane behaves like an electric circuit because of the existence of ion gradients maintained by the cell. The non-linearity of this circuit gives rise to complex oscillations of the membrane potential. By application of the finite difference method (FDM) and the concept of percolation we studied the role of the NCX in the regulation of the intracellular Ca(2+) concentration and the oscillations of the membrane potential. The fractal representation of the distribution of active channels allows us to follow the diffusion of intracellular Ca(2+) ions. These calculations show that the hyperpolarization and the change in the burst duration of the membrane potential are primarily due to the NCX.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号